

Overview

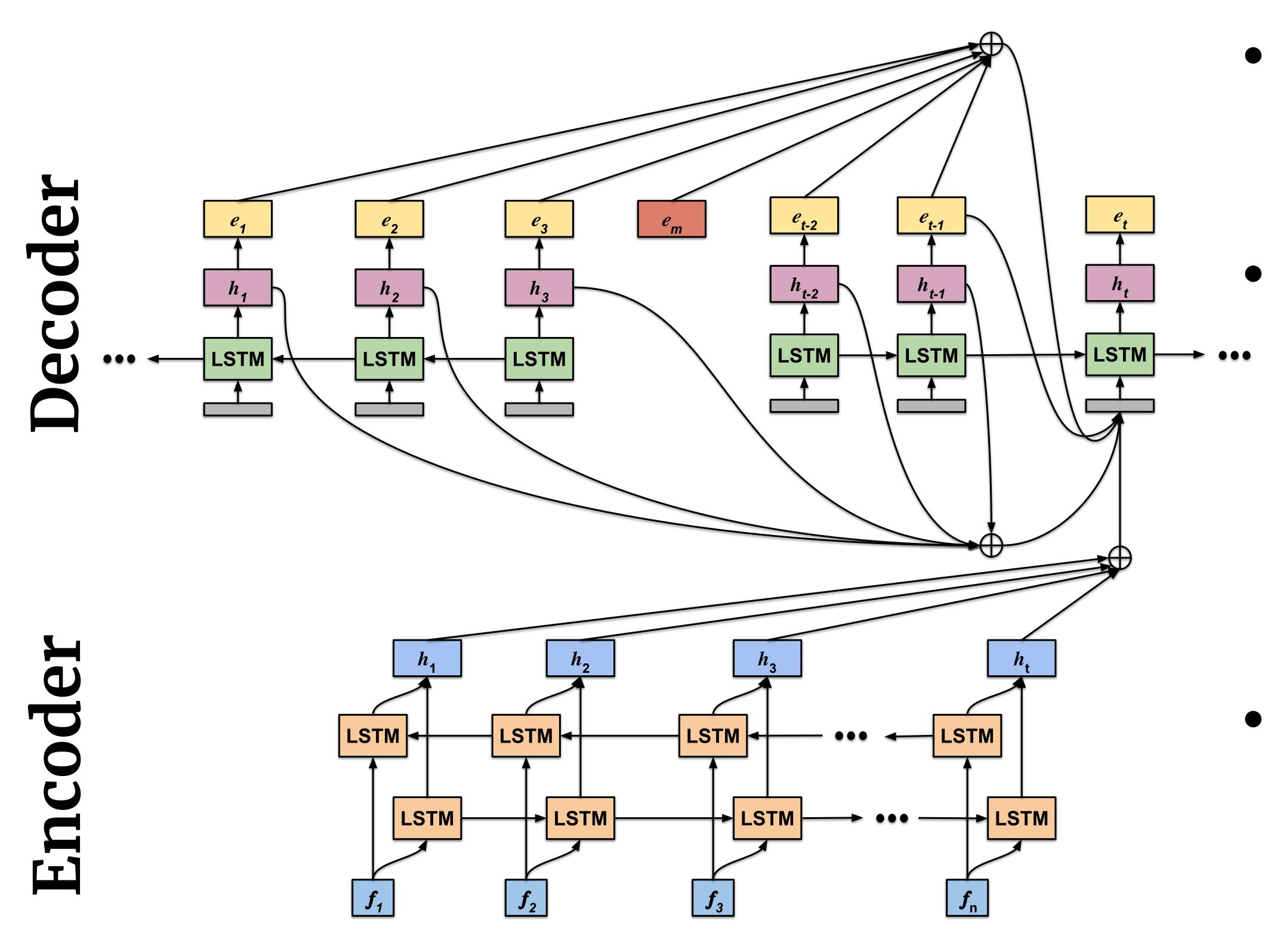
Motivation

- Left-to-right sequence generation results in earlier outputs having a profound effect on later outputs
- We speculate that this results in models that lack diversity and cannot be effectively controlled

Contribution

- We propose the *middle-out decoder* which begins from an initial middle-word and simultaneously expands the sequence in both directions
- To ensure the consistency and the coherence of the generated output sequence, we introduce a dual self-attention mechanism
- We perform quantitative experimentation demonstrating State-of-the-Art results on video captioning
- Our analysis demonstrates interesting and valuable properties of the middle-out decoder, such as the ability to effectively control the sequence generation.

Middle-Out Decoder



Middle-Out Decoding Shikib Mehri and Leonid Sigal

Synthetic De-Noising

Starting from an initial

- middle-word, **e**_m, our middle-out decoder generates the sequence **bidirectionally**
- Our dual self-attention ensures the coherence of the output by doing an attention over both
- o embedded outputs (Werlen et al., 2018)
- decoder hidden states (Daniluk et al., 2017)
- Variable definitions
- f is the frame feature vector
- *h* is the LSTM hidden state
- *e* is the embedded output words

Dataset

We evaluate a standard seq2seq network, as well as the We generate a synthetic dataset for the task middle-out decoder on this task -- demonstrating the of de-noising. We generate a symmetric sequence and add uniform noise to points. overwhelming effectiveness of the latter.

0.17	Input Sequence	De-noised Output Sequence	Models	MSE	Symmetric MSE
0.15	0.16		Seq2Seq	1.52 x 1e-3	0.0780
0.14	0.14	••••••	Middle-Out	3.51 x 1e-4	1.32 x 1e-4

Dataset

We utilize the **MSVD** (Youtube2Text) dataset (Chen and Dolan, 2011) which consists of 1970 youtube videos and captions.

Middle-Word

For the task of video captioning, we define the middle-word to be the action verb in the caption. We train a classifier to predict the middle-word (i.e., the action) given the video.

Models

LSTM + Visual Semantic Embedding

Paragraph RNN

Hierarchical Recurrent Neural Encod

Hierarchical LSTM + Adjusted Attention

Seq2Seq + Attention

Seq2Seq + Attention + Dual Self-Attent

Middle-Out + Attention

Middle-Out + Attention + Dual Self-Atte

Results

Video Captioning

Frame Features

The videos were sampled at 3fps and passed through a pretrained Inception-v4 model (Szegedy et al., 2017), to obtain a 1536-dim feature vector for each frame.

	METEOR	CIDEr-D	ROUGE-L	BLEU-4
ngs	31.0		_	45.3
	32.6	65.8	_	49.9
der	33.9	_	_	46.7
tion	33.6	_	_	53.0
	34.0	78.9	70.0	47.4
ntion	34.4	81.9	70.5	48.3
	30.9	68.6	66.9	40.8
ention	34.1	79.5	69.8	47.0

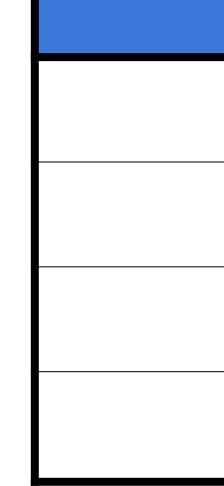
Controllable

We evaluate the quality of the output when providing the ground truth middle-word. We compare to Grid Beam Search (Hokamp and Liu, 2017).

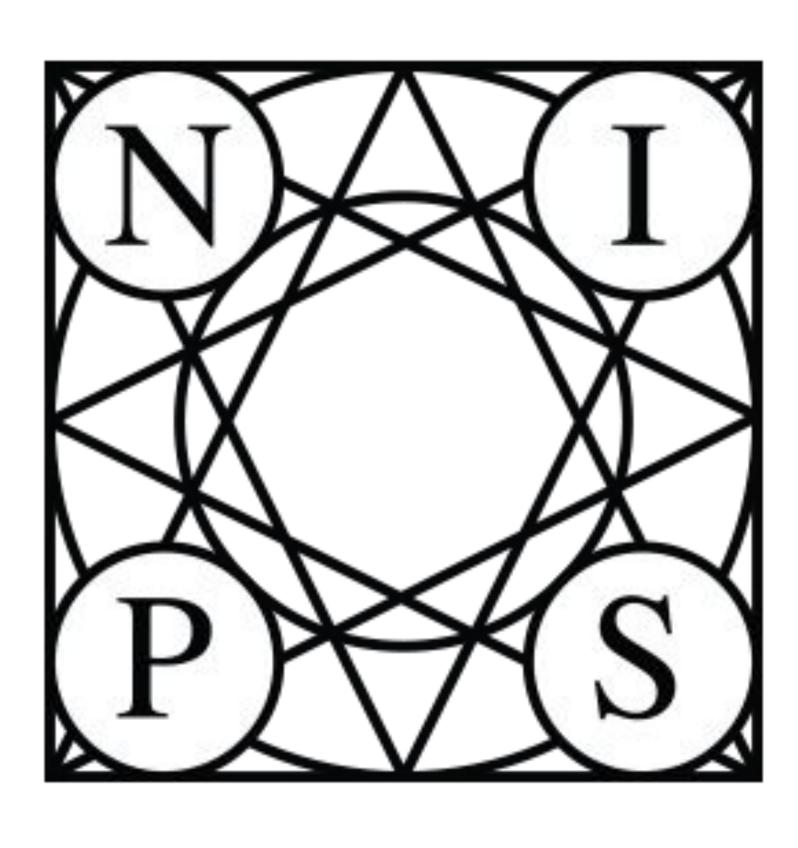
We provide qualitative examples to demonstrate that it can effectively utilize the middle-word to attend to various parts of the input. We concatenate two videos together and try to generate the caption for either of the two videos.

Provide
Seq2Sec
Middle-

Dependance on Middle-Word



*	Werlen,
	Proceed
•	Daniluk
	ICLR 20
•	Chen, E
	Proceed
•	Szeged



Properties of the Middle-Out Decoder

Models	METEOR	BLEU-4	
Seq2Seq	34.5	47.4	
Grid Beam Search	40.4	61.0	
Middle-Out	40.9	62.5	

	a magician is performing magic	a man is playing piano		
d Middle-Word	performing	playing		
q + Attention	a man is playing the piano	a man is playing the piano		
Out + Self-Attention	a man is performing on a stage	a man is playing the piano		

We simulate different classification accuracies to show that as the middle-word classification improves, decoder generates progressively higher-quality captions.

Accuracy	METEOR	CIDEr-D	ROUGE-L	BLEU-4
31.64%	34.1	79.5	69.8	47.0
50%	35.6	90.4	71.9	50.3
75%	38.4	105.6	75.1	56.2
100%	40.9	124.4	78.6	62.5

References

- n, Lesly Miculicich, et al. "Self-Attentive Residual Decoder for Neural Machine Translation." edings of NAACL 2018.
- k, Michał, et al. "Frustratingly short attention spans in neural language modeling." Proceedings of
- David L., and William B. Dolan. "Collecting highly parallel data for paraphrase evaluation." edings of ACL 2011.
- edy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." Proceedings of AAAI 2017.
- Hokamp, Chris, and Qun Liu. "Lexically constrained decoding for sequence generation using grid beam search." Proceedings of ACL 2017.