
Thesis Proposal

Towards Generalization in Dialog through Inductive Biases

Shikib Mehri

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Maxine Eskenazi (Chair) Carnegie Mellon University
Graham Neubig Carnegie Mellon University

Yonatan Bisk Carnegie Mellon University
Dilek Hakkani-Tur Amazon

Tiancheng Zhao Zhejiang University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Language and Information Technologies.

© 2021 Shikib Mehri



Abstract

Generalization is imperative in dialog research. Data-driven models have been shown to be capable of

performing specific tasks in constrained contexts, given ample data. However, the complexity of human

communication necessitates that models of dialog be capable of generalizing beyond the limitations of any

finite corpus. Models of dialog must be able to generalize to unseen and unforeseen phenomena. This

proposal studies four classes of generalization: (1) generalization to new inputs, (2) generalization to new

problems, (3) generalization to new outputs and (4) generalization to new dialog tasks. Inductive biases are

studied in order to facilitate these four classes of generalization. An inductive bias is motivated by prior

knowledge (e.g., domain knowledge, knowledge of the desired generalizations) and aims to influence the

abstractions learned by a model, in order to induce generalization. Four categories of inductive biases are

studied: (1) through self-supervised learning, (2) inductive biases in the model architecture, (3) inductive

biases in the problem formulation and (4) the task specification as an inductive bias.

This thesis proposal consists of four sections, each corresponding to one category of inductive bias.

Chapter 3 studies self-supervised learning as an inductive bias and validates the use of the self-supervised

training data and the self-supervised objectives as a mechanism for facilitating generalization to new inputs,

new problems and new outputs. Chapter 4 incorporates inductive biases into the model architecture, thereby

prescribing a specific procedure by which the model must infer the output from a given input. Through

inductive biases in the model architecture, models are shown to generalize to new inputs/domains and new

outputs. Chapter 5 studies inductive biases in the problem formulation, wherein a problem is reformulated

to better align with the capabilities of a pre-trained model. Both dialog evaluation and slot filling are refor-

mulated to the task of response generation, which results in zero-shot generalization to new inputs and new

outputs. Chapter 6 explores the most challenging class of generalization in dialog: generalization to new

tasks. To transfer to unseen tasks (e.g., restaurant reservations) in a zero-shot setting, the schema-guided

paradigm is introduced. The schema-guided paradigm uses the task specification (i.e., the definition of a

dialog task) as an inductive bias to facilitate zero-shot transfer to unseen tasks. Experiments validate the

efficacy of the schema-guided paradigm. Furthermore, this proposal proposes work that aims to extend the

schema-guided paradigm to facilitate practical zero-shot generalization for end-to-end response generation

through (i) Schema-Adherent Reinforcement Learning and (ii) Schema-Guided Fusion Networks.
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Chapter 1

Introduction

1.1 Overview

The need for generalization is a long-standing challenge in artificial intelligence research [Thrun and Mitchell,

1994; Mitchell et al., 1997; Torrey and Shavlik, 2010]. The inherently complex nature of many applications

of artificial intelligence, for instance natural language [Lebowitz, 1983], necessitates that intelligent systems

be able to generalize to unseen and unforeseen inputs. The need for generalization is further exacerbated by

the dominant paradigm of data-driven machine learning. While data-driven models excel at identifying pat-

terns in a dataset [Krizhevsky et al., 2012; Sutskever et al., 2014], they often struggle to generalize beyond

the specific observed data [Marcus, 2018].

Generalization is especially imperative in dialog research. The complexity of human communication

dictates that no finite dialog corpus can contain every phenomena necessary for modelling dialog. Data-

driven models of dialog have been shown to be capable of performing specific tasks in specific contexts [Gao

et al., 2018]. However, they struggle in low-resource settings and in transferring to unobserved phenomena.

In order to mature beyond this narrow scope, these models of dialog must be capable of generalizing beyond

specific corpora. Concretely, these are the four types of generalization necessary in dialog modelling:

• Generalization to New Inputs: The space of inputs for all natural language tasks is unbounded, due

to the compositional nature of language [Szabó, 2004]. Data-driven models must be able to generalize

to unobserved linguistic patterns and terminology, which often arise due to a domain shift or a stylistic

difference. A dialog model which is trained on a variety of domains (e.g., restaurants, attractions),

should have the capacity to generalize to new domains (e.g., hotels).

• Generalization to New Problems: Dialog modelling consists of a variety of problems, including

intent prediction, slot filling, state tracking, response generation and evaluation. It is desirable to have

a general purpose model of dialog that can be flexibly adapted to a variety of different problems. A

dialog model which is capable of intent prediction, has skills pertaining to language understanding

that should be transferred to other dialog problems, for instance slot filling.
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• Generalization to New Outputs: Dialog corpora are often collected with fixed ontologies (e.g.,

slots: restaurant name, date, time), however real-world usage often requires generalization beyond a

specific ontology. Generalizing beyond a specific ontology is required when transferring to new tasks

and domains (e.g., transfer from restaurants to hotels) or simply handling a constantly-evolving task

(e.g., a banking system wants to ask users for their date of birth). For this reason, models of dialog

should have the capacity to generalize to new output classes, including new slots, new intents and new

evaluation qualities (fluency, relevance, etc.).

• Generalization to New Tasks: There are many possible tasks that can be performed by a dialog

system (e.g., providing transit directions, booking flights, resetting the life support on a spaceship,

etc.). It is impossible to know all of the tasks a priori and dialog corpora generally consist of a few

different tasks. To handle a new task, or even to update the policy for an existing task, data-driven

models of dialog require additional dialog data. Since collecting additional data is expensive, both in

terms of time and cost, it is desirable for models of dialog to be able to generalize to new tasks. A

model that is trained on a dialog corpora consisting of several different tasks, should have the capacity

to generalize to a new unseen task.

This thesis proposal explores these four types of generalization in dialog modelling and aims to facil-

itate generalizability through the use of inductive biases [Mitchell, 1980]. An inductive bias is the set
of assumptions used by an intelligent system to predict outputs for unobserved inputs, i.e., to gen-
eralize. Inductive biases rely on prior knowledge (e.g., domain knowledge, knowledge of the desired
generalization, etc.) to influence the abstractions learned by a data-driven model, thereby inducing
a particular class of generalization. For example, the use of convolutional layers [LeCun et al., 1995]

enforces spatial invariance and therefore allows generalization to shifted images (e.g., training data has all

objects in bottom left, generalize to images with objects in top right). Multi-tasking is another inductive

bias, motivated by knowledge of the target problem, which improves the performance and facilitates gen-

eralization by simultaneously learning multiple tasks [Caruana, 1997]. An inductive bias allows a system

developer, with knowledge (i.e., of the domain, the problem or the desired generalization), to modify a com-

ponent of the data-driven model in order to prescribe specific behavior and therefore induce the desired

generalization.

A data-driven model, particularly a neural network, is often seen as a black-box algorithm that implicitly

learns abstractions from a given corpus. In contrast, incorporating inductive biases into the design of a data-

driven model allows the explicit enforcing of certain behaviors. Throughout this proposal, we present several

mechanisms for incorporating inductive biases into data-driven models of dialog. These inductive biases

allow us to encode prior knowledge in order to facilitate the four aforementioned classes of generalization.

In introducing the concept of learning machines, Turing and Haugeland [1950] describe three compo-

nents that influence the abilities of a human mind: (1) the initial state of the mind (i.e., at birth), (2) the

education to which it is subjected and (3) other experiences, not described as education, to which it has been

subjected. This characterization of a human mind can be adapted to describe a data-driven model. A data-
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driven model is the result of three components: (1) the design of the model architecture, which influences

the mechanisms by which it processes data, (2) the supervised learning it undergoes, which encompasses

the data, the training algorithm and the problem formulation and (3) the self-supervised learning which it

undergoes, which includes the data and the self-supervised objectives. Together, these three components

produce a data-driven model. As such, to influence the resulting model in order to facilitate generalization,

this proposal incorporates inductive biases into each of these three components.

Self-supervised learning is a long-standing concept in artificial intelligence research [Dayan et al., 1999].

Large-scale self-supervised training [Devlin et al., 2018; Radford et al., 2018] has brought about a paradigm

shift in natural language processing research. Concretely, self-supervised learning aims to learn patterns in

data without annotations or supervision. Instead, self-supervised training objectives learn to interpret and

represent the input through reconstruction tasks such as predicting the next word [Radford et al., 2018] or

predicting a masked word [Devlin et al., 2018]. Data for self-supervised training is widely available (i.e.,

on the internet), thereby allowing self-supervised learning to be performed at unprecedented scale [Radford

et al., 2019; Brown et al., 2020]. Self-supervised learning has been shown to facilitate generalization [Wang

et al., 2018] with BERT-based models. Devlin et al. [2018] achieve state-of-the-art results on a variety of

different problems, without necessitating hand-crafted architectures.

Self-supervised learning is itself a form of inductive bias. The choice of data and the self-supervised

objectives influence what is learned by a data-driven model, and can therefore be used to facilitate general-

ization. This thesis proposal explores the use of self-supervised learning as an inductive bias for inducing

generalization in models of dialog. Concretely, two studies are carried out:

• Section 3.2 presents a model that was pre-trained on open-domain dialog data, and carries out a com-

prehensive study of task-adaptive self-supervised pre-training and multi-tasking on a number of dif-

ferent language understanding problems in task-oriented dialog. This work demonstrates the efficacy

of self-supervised training as a mechanism for facilitating generalization to new domains. By using

self-supervised training as an adaptation mechanism, a dialog model can generalize to new problems

(intent prediction, slot filling and state tracking) and to new domains.

• Section 3.3 designs self-supervised objectives that approximate different qualities for open-domain

dialog evaluation. Concretely, three self-supervised objectives are designed as a proxy for five dif-

ferent qualities of dialog. Without any annotated data or supervised learning, the resulting models

effectively approximate different qualities and better correlate with human judgments than existing

automatic evaluation metrics. This work demonstrates that the choice of objectives acts as an induc-

tive bias that facilitates the development of a dialog evaluation model without any training data.

The design of a model architecture is another important component that defines the mechanisms by

which a data-driven model processes inputs and generates outputs. The architecture plays an important role

in dictating the abstractions learned by the resulting model. Hand-crafted architectures for dialog models

achieved strong performance on a variety of problems [Bhargava et al., 2013; Hakkani-Tür et al., 2016;
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Serban et al., 2017]. Researchers incorporate knowledge about the domain and the specific problem into the

design of a hand-crafted architecture, in order to influence the types of abstractions learned by the model.

For example, the Hierarchical Encoder Decoder (HRED) [Serban et al., 2017] is designed to first encode

every utterance in a dialog and then produce a dialog-level representation by considering a sequence of

utterance-level representations. This hierarchical structure is an inductive bias, motivated by the inherent

hierarchical structure in dialog, that forces a data-driven model to independently consider each utterance

prior to producing a dialog-level representation. These inductive biases allowed the model to learn higher-

level abstractions from a given corpus, in order to achieve better performance on a held-out test set.

This proposal incorporates inductive biases into the model architecture that facilitate generalization.

Through modifications to the architecture, and by extension the training algorithm, the resulting data-driven

model is forced to learn certain high-level abstractions that are capable of different types of generalization.

The design of these inductive biases is motivated by knowledge of the problem and the desired generaliza-

tion. Two studies are carried out pertaining to incorporating inductive biases into neural models of dialog:

• Section 4.2 presents Structured Fusion Networks, which aim to incorporate the traditional dialog

pipeline into neural response generation models. By designing an architecture and a multi-tasking

setup that mimics pipeline-based dialog systems, the resulting model possesses the generality and

transferability of pipeline-based dialog systems while still maintaining the benefits of neural models.

Structured Fusion Networks prescribe a specific procedure by which the model must perform the task

of response generation. In doing so, the resulting model performs better in low-resource settings and

can generalize to new domains with very little data.

• Section 4.3 introduces a model for the problem of intent prediction, which is capable of generalization

to new domains and to new outputs. This work leverages example-driven training, in combination

with self-supervised training (building on the work in Chapter 3), to facilitate generalization. In

example-driven training, the output class is predicted by measuring the similarity of a given input with

a set of examples. This modification to the architecture and training algorithm acts as an inductive

bias that (1) reduces the task to sentence similarity and relieves the model of having to learn an

implicit representation-to-intent mapping, (2) maintains consistency with the capabilities of the pre-

trained model, i.e. generating a similar encoding for similar inputs. By making the representation-

to-intent mapping an explicit non-parametric process (rather than an implicitly learned set of weights

in a classification layer), the resulting model is able to generalize to new outputs and can predict

unseen intents, given the corresponding examples. Furthermore, by maintaining consistency with the

capabilities of the pre-trained model, this approach avoids catastrophic forgetting and is capable of

generalizing to new domains without any training.

The problem formulation strongly influences what is learned by the resulting data-driven model. This

is especially true when working with large-scale pre-trained models. Pre-trained models have certain ca-

pabilities that can be effectively leveraged with the right problem formulation. In this sense, the problem
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formulation is an inductive bias that is motivated by knowledge about the pre-existing capabilities of the

pre-trained model. In this thesis proposal, we leverage generative pre-trained models that are trained on

open-domain dialog data. These models perform well on the task of open-domain response generation,

however they have also implicitly learned certain skills that can be leveraged for different dialog problems:

• Section 5.2 introduces fine-grained evaluation of dialog (FED), which reformulates the problem of

dialog evaluation to be better aligned with the capabilities of large-scale pre-trained generative lan-

guage models. Concretely, FED is an unsupervised evaluation metric which evaluates the language

model likelihood of certain follow-up utterances as a mechanism as an estimator of different evalu-

ation qualities (e.g., fluency, relevance, consistency, engagingness, etc.). This formulation of dialog

evaluation acts as an inductive bias that leverages the capabilities of the pre-trained model and leads

to zero-shot generalization to (1) new outputs (i.e., 18 different dialog qualities) and (2) new inputs

(i.e., different linguistic patterns).

• Section 5.3 similarly leverages the capabilities of pre-trained language models for the task of slot

filling. The Generative Slot Filling model (GenSF) formulates slot filling as a response generation

task. This formulation is motivated by the knowledge that pre-trained language models have implic-

itly learned some notion of certain slots (e.g., time, name, etc.). This formulation facilitates better

performance in low-resource settings and zero-shot generalization to new slots.

These three types of inductive biases (i.e., (1) through self-supervised learning, (2) in the architecture,

and (3) in the problem formulation) allow data-driven models to achieve three of the four aforementioned

classes of generalization (i.e., to new inputs, to new outputs and to new problems). However, these ap-

proaches are insufficient for achieving generalization to new tasks. In order to generalize to a new task, a

model must be capable of generalizing to new inputs (caused by a domain shift) and to new outputs (be-

cause new tasks may require new output classes). However, the most significant barrier in generalizing to

new tasks is the dialog policy.

The task-specific dialog policy defines a particular task. The policy specifies how the system should

respond to different user utterances. For example, the policy may indicate that after the user provides their

name - the system should ask for their date of birth. When generalizing to an unseen task, particularly in

zero-shot settings, the data-driven model has no notion of the dialog policy for the new task. This thesis

proposal addresses this problem by introducing the schema-guided paradigm. In addition to leveraging all

of the aforementioned types of inductive biases, the schema-guided paradigm introduces an inductive bias

that represents the task-specific dialog policy and thereby facilitates generalization to new tasks. Rather than

forcing the model to implicitly learn the dialog policy, in the schema-guided paradigm the policy is explicitly

provided to the model at training time. The resulting model learns to rely on the explicit representation of

the dialog policy. As such, the model is capable of zero-shot generalization to a new task, provided the

corresponding task-specific dialog policy. A study is carried out validating the effectiveness of the schema-

guided paradigm. Furthermore, a research direction is proposed to extend the schema-guided paradigm to

more realistic and practical settings:
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• Section 6.2 presents the Schema Attention Model (SAM), a data-driven model which leverages the

schema-guided paradigm to achieve zero-shot generalization to new tasks. SAM relies on (1) self-

supervised pre-training, (2) inductive biases in the model architecture, (3) a problem formulation that

facilitates generalization to new outputs and (4) a graph-based representation of the schema (i.e., the

dialog policy) which acts as an inductive bias during zero-shot generalization.

• Section 6.3 proposes to extend the work described in Section 6.2 to the problem of end-to-end re-

sponse generation, with a particular focus on enforcing controllability (via the task specification) and

robustness in end-to-end schema-guided models of dialog. To achieve robust and reliable general-

ization to new tasks, this work will develop (1) a schema-adherent reinforcement learning paradigm

and (2) schema-guided fusion networks. This proposed work aims to further validate the use of the

task specification as an inductive bias for facilitating generalization to new tasks in realistic zero-shot

settings.

This proposal presents four categories of inductive biases (i.e., (1) through self-supervised training, (2) in

the model architecture, (3) in the problem formulation and (4) through the task-specification) to address

the four classes of generalization necessary in dialog (i.e., to new inputs, to new outputs, to new problems

and to new tasks). These inductive biases are motivated by knowledge of the problem, the domain, or the

desired generalization. Data-driven models are effective at learning to address specific problems in specific

contexts. This thesis proposal takes an important step towards progressing models of dialog beyond this

narrow scope and to facilitate generalization to unseen and unforeseen inputs.

1.2 Thesis Statement

Thesis Statement: This thesis proposal advocates for the use of inductive biases to facilitate generalization

in dialog. Inductive biases can be leveraged to influence the high-level abstractions that are learned by a data-

driven model. By designing inductive biases, motivated by knowledge of the domain, problem or the desired

generalization, the work in this proposal achieves superior generalization. Four different types of inductive

biases are explored: (1) through self-supervised training, (2) inductive biases in the model architecture, (3)

inductive biases in the problem formulation, (4) the schema-guided paradigm as an inductive bias of the

dialog policy. These four types of inductive biases facilitate four classes of generalization in dialog: (A)

generalization to new inputs, (B) generalization to new problems, (C) generalization to new outputs and (D)

generalization to new tasks. This thesis proposal addresses the problem of generalization and carries out

studies to justify the claim that if inductive biases are leveraged to incorporate domain knowledge into a

data-driven model, then models of dialog can progress beyond the limitations of the training corpora and

successfully generalize to unseen and unforeseen phenomena.

Table 1.1 characterizes the different inductive biases used in this thesis proposal, their corresponding

motivation and resulting generalizations.

10



Section Inductive Biases Motivation Generalizes to Problems

3.2
self-supervised data;
training algorithm

adapt to relevant
domains

new inputs; new
problems

intent prediction;
state tracking;

semantic parsing;
slot filling

3.3
self-supervised
objectives; self-
supervised data

approximate
evaluation qualities

new inputs; new
outputs (qualities)

dialog evaluation

4.2
model architecture;
training algorithm

structured modelling
resembling

pipeline-based
systems

new inputs response generation

4.3
model architecture;
training algorithm

facilitate
generalization to new

outputs; leverage
capabilities of

pre-trained models

new inputs; new
outputs

intent prediction

5.2 problem formulation
leverage capabilities
of pre-trained models

new inputs; new
outputs

dialog evaluation

5.3
problem formulation;
model architecture

leverage capabilities
of pre-trained models

new inputs; new
outputs

slot filling

6.2

task specification;
model architecture;
problem formulation;
self-supervised data

disentangle the
task-specific dialog
policy to facilitate

generalization to new
tasks

new inputs; new
outputs; new tasks

next action
prediction

6.3

task specification;
model architecture;
problem formulation;
self-supervised data

proposed work:
develop

schema-guided
response generation
models to facilitate
robust and reliable

generalization

new inputs; new
outputs; new tasks

next action
prediction

Table 1.1: Characterization of the different studies carried out in this thesis proposal, the inductive biases
used, their corresponding motivations and the resulting generalizations.
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Chapter 2

Background and Related Work

2.1 Neural Models of Dialog

2.1.1 Natural Language Understanding

Language understanding is a critical component of dialog systems. The objective of natural language un-

derstanding is to extract semantic concepts from natural language utterances, through intent prediction and

slot filling [Tur and De Mori, 2011]. Through the ability to learn meaningful patterns from large volumes of

data, neural models provide a scalable framework for language understanding [Mesnil et al., 2013].

Intent prediction is the problem of classifying a natural language utterance into one of several pre-

defined intent classes [Hemphill et al., 1990; Coucke et al., 2018]. For example, given the utterance ‘I’m

leaving from CMU’, the appropriate intent class may be ‘inform-departure-location’. Intent prediction is

a vital component of dialog systems, as determining the goals of the user is the first step to producing an

appropriate response [Raux et al., 2005; Young et al., 2013].

Slot filling is the problem of identifying values for pre-defined attributes, or slots, in a natural language

utterance [Tur and De Mori, 2011]. For example, given the utterance ‘I’m leaving from CMU at 10 AM’,

the resulting slots should be ‘departure-location’: CMU and departure-time: 10 AM. Slot filling is a crucial

component of task-oriented dialog systems, as it allows a dialog system to ground its response generation

in the information provided by the user [Young, 2002, 2010]. The majority of early work on language

understanding leverages the Airline Travel Information System (ATIS) corpus [Hemphill et al., 1990], which

consists of slot-labeled utterances pertaining to flight-related information (e.g., ‘I want to fly to Boston from

New York next week’).

The earliest use of neural models for language understanding was in the context of call-routing, wherein

the domain and the intent of a natural language utterance had to be determined in order to appropriately

route the call. Sarikaya et al. [2011] leveraged Deep Belief Nets (DBNs) to learn a multi-layer generative

model from unlabeled data. The features discovered by the DBN were then used to initialize a feed-forward

neural network, which was fine-tuned on labeled data. The resulting neural model was shown to outperform
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traditional classifiers (e.g., Support Vector Machines, Maximum Entropy, etc.) on the problem of intent

prediction, especially when trained on larger quantities of data.

Deoras and Sarikaya [2013] leverage a similar approach for the task of slot filling. By initializing a

feed-forward neural network with features learned by a DBN, the resulting neural model outperforms con-

ditional random fields (CRF), which were at the time the state-of-the-art for sequence classification. Mesnil

et al. [2013] train several classes of recurrent neural networks (RNNs) on the ATIS corpus and outperform

CRF classifiers. Mesnil et al. [2014] carries out additional experiments demonstrating that RNN classifiers

outperform feed-forward neural networks. Yao et al. [2013] improve the use of RNNs for slot filling by

incorporating lexical, named entity and bag-of-words features into the model. By incorporating additional

features, Yao et al. [2013] were using inductive biases to influence the abstractions learned by the model

in order to better model the ATIS corpus. Yao et al. [2014] use long short-term memory (LSTM) networks

[Hochreiter and Schmidhuber, 1997; Hochreiter, 1998] and demonstrate that the improved sequence mod-

elling abilities of LSTMs results in stronger performance on the problem of slot filling.

Shi et al. [2015] jointly train a model for domain identification, intent prediction and slot filling. Their

model first encodes an utterance using an RNN and classifies the utterances using a convolutional neural

network (CNN). Similarly [Xu and Sarikaya, 2013] jointly trains a CNN model on the tasks of intent de-

tection and slot filling. The model of Xu and Sarikaya [2013] uses CNNs to construct a neural version of

a triangular CRF, which jointly models the intent and slot sequence and exploits their dependencies. Guo

et al. [2014] jointly trains on domain classification, intent prediction and slot filling using a recursive neural

network. The recursive neural network encodes an utterance recursively, conditioned on the parse tree of

the utterance. By jointly training on multiple natural language understanding problems, these approaches

are leveraging domain knowledge about the inherent similarity of these tasks as an inductive bias that influ-

ences the abstractions learned by the model. Furthermore, domain knowledge about the problem motivates

the design of the model architectures, as exemplified by the CNN triangular CRF of Xu and Sarikaya [2013]

and the recursive neural network of Guo et al. [2014].

Motivated by the success of early neural approaches for language understanding, the dialog research

community began developing custom architectures and training paradigms to improve neural models. Kurata

et al. [2016] propose the encoder-labeler LSTM, which first encodes an input utterance into a fixed length

vector that is then used as the initial state of another LSTM for sequence labeling. In this manner, the

second LSTM can fill slots with knowledge of the entire sequence. Liu and Lane [2016] proposes an RNN

encoder-decoder network with attention for the tasks of slot filling and intent prediction. The use of the

attention mechanism allows the encoder-decoder network to better identify supporting information when

when predicting a slot tag for a particular word. To mitigate the difficulty of memorization in RNNs, Peng

and Yao [2015] propose RNNs with external memory which can dynamically read from/write to an external

memory, in order to better leverage patterns observed in previous utterances. Goo et al. [2018] augment

an attention RNN with a slot-gating mechanism to better model the relationship between the intent classes

and slot tags. Zhao and Feng [2018] present a generative model for slot filling which combines a sequence-

to-sequence network with a pointer network. Zhang et al. [2020] represent the utterance as a graph and
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leverage a graph LSTM architecture to encode the utterance and predict the appropriate slots and intents.

Neural models for language understanding were progressively improved to better model the problems

of intent prediction and slot filling. These improvements to the architecture design were motivated by

domain knowledge (e.g., the relationship between intents and slots; the importance of external knowledge

in slot filling). Changes to the model architectures influenced the abstractions learned by the model, and

therefore allowed better generalization to unseen samples in the test set. Nonetheless, these neural models

are largely incapable of generalization to out-of-domain samples [Chen et al., 2019a] and are constrained to

a pre-defined ontology of slots and intents [Wu et al., 2019].

2.1.2 Response Generation

The problem of response generation requires a dialog system to generate a natural language response to

a given dialog context. Generating a relevant, fluent and appropriate response is a challenging task that

necessitates (1) understanding a natural language conversation, (2) producing a natural language utterance,

and (3) progressing the dialog according to some pre-defined dialog policy. The problem of response gen-

eration is central to dialog; ‘solving’ response generation would be equivalent to solving dialog [Turing and

Haugeland, 1950].

It is important to make the distinction between response generation and natural language generation.

The objective of natural language generation is to generate an appropriate response conditioned on a desired

system action or a set of slot values [Rambow et al., 2001]. In contrast, response generation is the end-to-end

task of mapping a dialog history to a natural language response.

Vinyals and Le [2015] train a sequence-to-sequence (seq2seq) network [Sutskever et al., 2014] for both

open-domain and goal-oriented dialog. A response is generated using an LSTM to first encode the conver-

sation history and subsequently generate the natural language response. The seq2seq network is trained on

the OpenSubtitles dataset [Tiedemann, 2009] and internal dataset of IT conversations.

Since the work of Vinyals and Le [2015], there has been a large body of work addressing the problem

of response generation. Li et al. [2015] use a Maximum Mutual Information (MMI) training objective to

encourage informative responses. Serban et al. [2016] propose the hierarchical encoder decoder (HRED)

to better model the hierarchical nature of dialog. HRED uses utterance encoder to produce utterance-level

encodings and subsequently reasons over the utterance encodings using a conversational context encoder. Li

et al. [2016b] incorporate a number of heuristics into a reinforcement learning reward function, to encourage

useful conversational properties such as informativity, coherence and forward-looking. Li et al. [2016a]

encodes a speaker’s persona as a distributed embedding and uses it to improve dialog generation. Zhao et al.

[2017a] enable task-oriented systems to handle out-of-domain conversation, through the use of augmented

training data and an entity indexer. Li et al. [2017] train a discriminator to predict whether an utterance was

generated by the dialog system or a human, and leverage this discriminator to train a response generation

model. Eric and Manning [2017] present introduce key-value retrieval networks, which generates a response

by reasoning over underlying knowledge bases through a key-value retrieval mechanism.
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The MultiWOZ corpus [Budzianowski et al., 2018] is a useful resource for research on response gener-

ation for task-oriented dialog. MultiWOZ consists of dialogs between a tourist and a clerk at an information

centre. MultiWOZ consists of multi-domain dialogs spanning seven different domains (restaurants, hotels,

attractions, trains, hospital, taxi, police). In addition to dialogs, the corpus consists of belief span, user

intent and dialog act annotations. These additional annotations allow research into structured modelling of

task-oriented response generation. Furthermore, the presence of multiple domains facilitates an assessment

of the generalizability of dialog models.

The baseline response generation model presented by Budzianowski et al. [2018] augments a seq2seq

network, by incorporating the ground-truth belief span annotation using a feed-forward layer between the

encoder and the decoder. Chen et al. [2019b] augment a Transformer network [Vaswani et al., 2017] with

a gating mechanism that conditions on a dialog act graph. In this manner, different self-attention heads are

used depending on the predicted dialog act graph for a given dialog context. Zhao et al. [2019] introduces

a latent action framework that treats the action spaces of seq2seq models as latent variables. Through this

latent action framework, it is possible to optimize an end-to-end response generation model with reinforce-

ment learning while mitigating the degradation in the quality of the natural language responses.

Neural networks for response generation aim to learn a semantically meaningful mapping between a

dialog context and a system response. To better accomplish this, research has augmented architectures

and training paradigms with inductive biases that influence certain behaviors in the resulting models. In

modelling open-domain dialog, the objective has generally been to produce more engaging and relevant

responses. In contrast, research in task-oriented response generation has addressed the challenges of pro-

ducing system responses that progress the dialog according to some task-specific policy (i.e., help the user

achieve certain goals) and to effectively leverage knowledge.

End-to-end neural networks for response generation have been shown to suffer from a number of short-

comings. Li et al. [2016b] introduced the dull response problem, which describes how neural dialog systems

tend to produce generic and dull responses (e.g., "I don’t know"). Zhao and Eskenazi [2018] describes gen-

erative dialog models as being data-hungry, and difficult to train in low-resource environments. Mo et al.

[2018]; Zhao and Eskenazi [2018] both demonstrate that dialog systems have difficulty generalizing to new

domains. Madan et al. [2018]; Zhao et al. [2018] highlight the inherent lack of interpretability in standard

generative dialog models, both proposing unsupervised mechanisms of making models more interpretable.

Hu et al. [2017] work on the problem of controllable text generation, which is inherently difficult in seq2seq

architectures, including generative models of dialog.

2.2 Pre-Trained Models

The advent of large-scaled pre-trained models has brought about a paradigm shift in natural language pro-

cessing. Rather than designing sophisticated architectures consisting of well-motivated inductive biases,

strong performance can be obtained on a variety of problems by fine-tuning pre-trained models. This sec-

tion describes large-scale pre-trained models, their applications to dialog, their achievements in facilitating
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generalization and the shortcomings of the fine-tuning paradigm.

2.2.1 Large-Scale Pre-Trained Models

Neural networks perform best when trained on large quantities of data. However, natural language process-

ing suffers from a data scarcity problem. It is infeasible to construct a annotated corpus that contains every

phenomena necessary for modelling language. This problem is mitigated to some degree through the careful

design of model architectures and training paradigms, which learn higher level abstractions that can gener-

alize to unseen samples in the test set. However, this is still insufficient for generalizing to new domains or

in low-resource settings. Large-scale pre-training aims to tackle the problem of generalization. Concretely,

models are pre-trained in a self-supervised manner on large quantities of unlabeled data. These pre-trained

models are then fine-tuned on an annotated downstream corpus. In this manner, the model learns to produce

meaningful representations during pre-training which are then leveraged during fine-tuning.

The first instance of large-scale pre-training in NLP was word2vec [Mikolov et al., 2013a] which trains

log-linear classifiers in a self-supervised manner on the Google News corpus (6 billion tokens). Two ver-

sions of word2vec were trained, CBOW word2vec (continuous bag-of-words) which predicts the current

word based on the surrounding context and skip-gram word2vec which predicts the surrounding words con-

ditioned on the current words. The word2vec model learns representations of words such that semantically

similar words have similar vector representations. The word2vec model was then used to initialize embed-

dings in models for downstream tasks.

Skip-thought vectors [Kiros et al., 2015] were pre-trained on the BookCorpus dataset [Zhu et al., 2015],

a collection of text from books totalling over 984 billion words. Kiros et al. [2015] train skip-thought

vectors to auto-regressively generate the previous sentence and the next sentence conditioned on the current

sentence. Through this self-supervised training, skip-thought vectors learn to produce better contextual

representations of text. The off-the-shelf use of skip-thought vectors resulted in better performance on

several downstream tasks.

Peters et al. [2018] trained a deep bidirectional LSTM language model on a large text corpus (5.5 billion

words) to predict both the next and previous word. The intermediate layers of the deep LSTM were then

used to produce ELMo (Embeddings from Language Models). Rather than using the top-level representation

produced by the biLSTM, ELMo learns a linear combination of the different layers for each downstream

task. ELMo achieved state-of-the-art results on several downstream language understanding tasks.

Radford et al. [2018] introduce GPT, a unidirectional language model using a transformer architecture

[Vaswani et al., 2017] that was pre-trained on the BookCorpus [Zhu et al., 2015]. GPT achieved strong

performance on several downstream tasks after pre-training with a simple language modelling objective.

Devlin et al. [2018] introduce BERT, a large transformer model that was trained with two self-supervised

objectives: masked language modelling and next sentence prediction. In masked language modelling, sim-

ilar to the the CBOW word2vec model [Mikolov et al., 2013b] the objective is to predict a masked token

conditioned on the surrounding context. Through the masked language modelling objective, BERT learns to
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produce contextually meaningful representations of words. Next sentence prediction tasks BERT with pre-

dicting whether a sentence is the appropriate next sentence. The next sentence prediction objective forces

BERT to produce meaningful sentence-level representations. Through pre-training on English Wikipedia

and the BookCorpus (totalling over 3 billion words), BERT achieves state-of-the-art results on a number of

natural language understanding tasks and the GLUE benchmark [Wang et al., 2018].

The impressive performance of BERT inspired several follow-up studies in large-scale pre-training. Liu

et al. [2019b] present RoBERTa which trains a BERT-based model on additional data, for a longer duration

and with better hyperparameter tuning. RoBERTa strongly outperforms BERT, demonstrating the impor-

tance of scale in pre-training. Yang et al. [2019] introduce XLNET which uses a modified self-supervised

objective which learns conditional distributions for all permutations of tokens in a sequence. BERT is time-

consuming and expensive to pre-train and difficult to deploy in production settings due to its large parameter

size. To address this problem, there have been efforts to make BERT more efficient through parameter re-

duction techniques such as knowledge distillation [Sanh et al., 2019] and cross-layer parameter sharing [Lan

et al., 2019].

GPT-2 [Radford et al., 2019] improves upon the GPT, by training a larger language model (1.5B param-

eters) on over 8 million webpages from WebText (40GB of text). GPT-2 demonstrates strong gains on a

variety of language understanding and generation tasks. Zhang et al. [2019c] introduces DialoGPT, which

further pre-trains the GPT-2 model on 147 million open-domain dialogs extracted from Reddit. Through

human evaluation, DialoGPT is shown to generate high quality responses for open-domain dialog, on par

with human-generated responses.

GPT-3 [Brown et al., 2020] is a 175B parameter language model trained on the CommonCrawl data,

which consists of over 400B tokens. Despite training with a simple language modelling objective, similar

to GPT and GPT-2, GPT-3 achieves impressive results on a variety of language understanding and lan-

guage generation tasks without any additional fine-tuning. Through large-scale pre-training on a massive

collection of text from the internet, GPT-3 was able to learn high-level abstractions that facilitate few-shot

generalization through prefix tuning.

2.2.2 Fine-Tuning on Dialog

Large-scale pre-training has attained significant performance gains across many tasks within NLP [Devlin

et al., 2018; Radford et al., 2018]. Through self-supervised pre-training on large natural language corpora,

these models gain generalized language understanding capabilities that transfer effectively to downstream

tasks [Wang et al., 2018]. Generally, prior to fine-tuning, the pre-trained models are adapted to the specifics

of the downstream task through minor architectural modifications (e.g., adding a classification layer) [Chen

et al., 2019a]. By avoiding major task-specific changes to the models, it is assumed that the underlying

pre-trained models possess a degree of generality that allows transfer to a variety of tasks.

Chen et al. [2019a] fine-tune BERT for the tasks of intent prediction and slot filling, obtaining state-of-

the-art results by simply adding a linear classification layer on top of the BERT architecture. Castellucci
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et al. [2019] concurrently carry out similar studies and further assess the performance of BERT on non-

English language understanding corpora. Heck et al. [2020] fine-tune BERT for dialog state tracking, using

a triple copy mechanism that can copy values from (1) the user input, (2) the system utterances, and (3)

different slots.

Pre-trained models have also been leveraged for task-oriented response generation. Large-scale pre-

trained models excel at sampling from a distribution of potential responses, to generate a relevant and

appropriate response to a dialog context. This makes them especially effective for open-domain dialog,

which is not necessarily goal-driven. In contrast, this is detrimental to task-oriented dialog wherein system

responses must progress the dialog according to a task-specific policy. To mitigate this problem, the belief

states, database outputs, and predicted dialog acts are incorporated as part of the input sequence when fine-

tuning pre-trained models, such as GPT-2, on task-oriented dialog corpora [Budzianowski and Vulić, 2019;

Peng et al., 2020b; Yang et al., 2020].

To better adapt pre-trained language models for task-oriented dialog, there has been considerable efforts

in further pre-training on task-oriented dialog data. Wu et al. [2020] further pre-trains BERT with self-

supervised objectives on multiple task-oriented dialog datasets, prior to supervised fine-tuning. Peng et al.

[2020a] further trains GPT-2 on a number of task-oriented dialog data for the task of response generation,

conditioned on structured intermediate annotations (belief span, database output) incorporated into the se-

quence. Rather than further pre-training an existing model, ConveRT [Henderson et al., 2019] pre-trains

only on open-domain dialog with a light-weight model and demonstrates superior transfer to task-oriented

dialog relative to BERT on both intent prediction [Casanueva et al., 2020] and slot filling [Coope et al.,

2020]. By further pre-training on dialog data, these approaches achieve better alignment between the capa-

bilities of the pre-trained model and the requirements of the downstream problems. Henderson and Vulić

[2020] take this a step further by designing a custom pre-training paradigm specifically for the task of slot

filling. Concretely, the ConVEx model uses open-domain dialogs from Reddit with a pairwise cloze pre-

training objective. Through this pre-training objective, the ConVEx model learns representations that result

in better slot filling performance on several downstream corpora.

2.3 Dialog Evaluation

Evaluation metrics often define the research direction of a field. As dialog systems begin to demonstrate

human-level performance [Zhang et al., 2019c; Adiwardana et al., 2020], the development and adoption of

meaningful and interpretable automatic evaluation measures is essential. Since standard language evaluation

metrics (e.g., BLEU, METEOR) have been shown to be ineffective for dialog [Deriu et al., 2019; Liu et al.,

2016], human evaluation is often used for dialog evaluation. However, human evaluation is costly and is

typically only used as a final evaluation. During development, systems are generally optimized for poorly

correlated automatic metrics which can result in sub-par performance [Dinan et al., 2019]. Automatic met-

rics must be meaningful and interpretable so that they can be used to compare dialog systems, understanding

their respective strengths and weaknesses, and effectively guide dialog research. This section provides an
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overview of research on automatic evaluation of dialog.

2.3.1 Standard Evaluation Metrics

Until recently, dialog systems research used standard language evaluation metrics. These metrics were

initially developed for machine translation and compute word overlap between the generated text and a

ground-truth reference.

BLEU [Papineni et al., 2002] is a word overlap metric that is often used to benchmark natural language

generation. BLEU computes the n-gram precision between the generated response and a human reference.

METEOR [Banerjee and Lavie, 2005] and ROUGE Lin [2004] were proposed to improve upon BLEU.

METEOR incorporates stems and synonyms when calculating word overlap. Instead of computing preci-

sion, ROUGE opts to measure n-gram recall. Though these two metrics improve upon BLEU, they remain

ineffective for dialog evaluation [Liu et al., 2016].

Dialog evaluation is difficult for several reasons: (1) The one-to-many nature of dialog [Zhao et al.,

2017b] makes word-overlap metrics ineffective for scoring valid responses that deviate from the ground-

truth [Liu et al., 2016; Deriu et al., 2019]. To avoid comparing to a single reference response, several papers

have proposed the use of multiple reference responses. Multiple reference responses can be obtained with

retrieval models [Galley et al., 2015; Sordoni et al., 2015] or through data collection [Gupta et al., 2019].

These multi-reference metrics show improvement in performance, but it is infeasible to thoroughly cover

the space of potential responses for a given dialog context. (2) Dialog quality is inherently multi-faceted

[Walker et al., 1997; See et al., 2019] and an interpretable metric should measure several qualities (e.g.,

interesting, relevant, fluent). The relative importance of different qualities may differ for different domains

and applications. As such, it is unreasonable for a dialog evaluation metric to prescribe the criteria that

makes a response or a dialog good. (3) Dialog systems have begun to be evaluated in an interactive setting

[Ram et al., 2018; Adiwardana et al., 2020] where a real user has a back-and-forth conversation with a

system. Interactive evaluation is not constrained to a static corpus and better captures the performance of

a system in a realistic setting. However, standard language evaluation metrics compare to a ground-truth

response, making them unsuitable for assessing interactive conversations. Furthermore, it is imperative that

dialog evaluation metrics measure dialog-level qualities such as consistency, cohesiveness and topic depth.

2.3.2 Embedding-Based Metrics

To address some of the shortcomings of standard evaluation metrics, a new class of metrics was proposed.

Embedding-based metrics compute the similarity between the generated text and the ground-truth by com-

puting similarity in embedding space.

Greedy Matching [Rus and Lintean, 2012] is an embedding-based metric that greedily matches each

word in the generated sequence to a reference word based on the cosine similarity of their embeddings. The

final score is then an average over all the words in the generated sequence. Embedding Average [Wieting

et al., 2015] computes a sentence embedding for both the generated sequence and the ground-truth response
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by taking an average of word embeddings. The score is then a cosine similarity of the average embedding

for both the generated and reference sequence. Vector Extrema [Forgues et al., 2014] follows a similar setup

to Embedding Average, where the score is the cosine similarity between sentence embeddings. Rather than

taking an average over word embeddings, this method identifies the maximum value for each dimension

of the word embedding. Taking the maximum is motivated by the idea that common words will be de-

emphasized as they will be closer to the origin. Vector Extrema has been shown to perform better on dialog

tasks than other metrics [Gupta et al., 2019; Liu et al., 2016]. Skip-Thought [Kiros et al., 2015] uses a

recurrent neural network to produce a sentence-level embedding for the generated and reference sequences.

A cosine similarity is then computed between the two embeddings.

BERTScore [Zhang et al., 2019b] uses a pre-trained BERT [Devlin et al., 2018] model to greedily match

each word in a reference response with one word in the generated sequence. By doing so, it computes the

recall of the generated sequence. BERTScore was shown to have strong system-level and segment-level

correlation with human judgment on several machine translation and captioning tasks. However, although

it is a more sophisticated metric, it still compares word similarity between a reference and a generated

sequence. While this method may work well for tasks where there is a limited space of outputs for each

input (e.g., captioning, translation), it is ineffective at dealing with the one-to-many nature of dialog.

2.3.3 Model-Based Evaluation

To better address the one-to-many problem in dialog, several approaches were proposed for model-based

evaluation. Model-based evaluation relies on a model to predict the quality of a particular response in the

context of the dialog history.

Lowe et al. [2017] train ADEM to produce a quality score conditioned on the dialog context, the ref-

erence response and the generated response. Venkatesh et al. [2018] present a framework for evaluation of

Alexa prize conversations, which attains moderate correlation with user ratings. Both of these methods are

trained on explicit quality annotations. This allows these metrics to progress beyond the limitations of the

reference response, however they are still constrained by the limitations of their training corpora. Evaluation

metrics must be able to generalize to new domains, topics and systems. Model-based metrics that train on

specific corpora may be incapable of this type of generalization, and therefore insufficient for evaluating

dialog beyond the domains and systems present in their training data.

Li et al. [2017] proposes a reference-free dialog evaluator which is trained to discriminate between hu-

man and generated responses. This approach evaluates the quality of a response without a reference or

quality annotation training data. Li et al. [2017] use this evaluation model as a reward during reinforcement

learning and demonstrate strong performance. However, correlation with human judgement was not evalu-

ated. It may be insufficient to rely on a discriminator as a meaningful evaluation of dialog since this assumes

that all human responses are perfect and all generated responses are imperfect.

Tao et al. [2018] present RUBER which consists of both a referenced metric and an unreferenced metric.

The referenced metric calculates the cosine similarity of word embeddings between system response and a
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human reference. The unreferenced metric is a model-based metric trained with a triplet ranking loss.

While the referenced metric measures similarity to the ground-truth response, the unreferenced metric of

RUBER predicts whether whether a generated response is appropriate in the context of the dialog history.

The unreferenced metric of RUBER is an especially important contribution as it demonstrates the efficacy

of using self-supervised training to evaluate dialog without comparing to a reference response. This type of

evaluation progresses beyond the limitations of both the referenced response and the specific training data

used in model-based evaluation.

2.3.4 Evaluation with Pre-Trained Models

The advent of large-scale pre-trained models [Devlin et al., 2018] brought about a new class of dialog

evaluation metrics. Similar to the unreferenced metric of Tao et al. [2018], this class of metrics relies on

self-supervised training to evaluate dialog without relying on a reference response.

BERT-RUBER [Ghazarian et al., 2019] replaces the RNN in RUBER with a pre-trained BERT model

to further improve the performance using contextualized word embeddings. Building on BERT-RUBER,

PONE [Lan et al., 2020] improves the training of the unreferenced metric by improving the negative sam-

pling and training the evaluation model on a dataset augmented by NLG models. MAUDE [Sinha et al.,

2020] further improves upon the unreferenced metric in RUBER by training with Noise Contrastive Esti-

mation (NCE) [Gutmann and Hyvärinen, 2010] which requires the model to differentiate between a correct

response and randomly sampled negative responses.

DEB [Sai et al., 2020] constructs a dialog dataset with manually-created relevant and adversarial irrel-

evant responses. DEB by first pre-trains BERT on a large-scale dialog corpus and subsequently fine-then

on the proposed task-specific dataset with only the next sentence prediction objective. GRADE [Huang

et al., 2020] models topic transition dynamics in dialog by constructing a graph representation of the dialog

history. This graph is then passed as input to a model that is trained with the same triplet loss as RUBER.

Through the graph representation of the dialog history, GRADE better models turn-level topic transition

dynamics in dialog. While GRADE is focused on turn-level topic transition dynamics in dialog, DynaEval

[Zhang et al., 2021a] uses a graph structure to model the dialog-level interaction between users and systems.

USL-H [Phy et al., 2020] combines three models trained with different objectives: valid utterance pre-

diction (VUP), next utterance/sentence prediction (NSP), and MLM. VUP model decides whether the re-

sponse is valid in terms of its grammatical correctness. NSP model and MLM model are trained on a dialog

corpus to evaluate sensibleness and likelihood of responses respectively. Similarly, the Deep AM-FM met-

ric [Zhang et al., 2021b] measures two aspects of dialog quality through the Adequacy Metric (AM) and

the Fluency Metric (FM). AM assesses the semantic similarity of system responses and human references

by comparing their BERT embeddings. FM compares the similarity of the language model probabilities

for both the system response and the human reference, and produces a higher score if the probabilities are

similar.

HolisticEval [Pang et al., 2020] uses GPT-2 [Radford et al., 2019] and pre-trained models natural lan-
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guage inference model to assess several qualities of dialog: context coherence, language fluency, response

diversity, and logical self-consistency. PredictiveEngage [Ghazarian et al., 2020] incorporates an utterance-

level engagement classifier to better assess the overall quality of a response. FlowScore [Li et al., 2021]

uses a large pre-trained model to construct dynamic information flow from the dialog history to evaluate the

quality of a dialog.

This class of dialog evaluation metrics has achieved promising results, especially in terms of correla-

tion with human judgments. By leveraging large-scale pre-trained models and performing self-supervised

training, this class of evaluation metrics is capable to generalize and therefore better able to evaluate dialog.

2.4 Generalization in Dialog

The primary goal of this thesis proposal is to facilitate generalization in models of dialog. The concept

of generalization is central to machine learning [Thrun and Mitchell, 1994], and has been an important

consideration in the design of data-driven models of dialog. Early neural dialog models, such as those

described in Section 2.1, designed architectures and training paradigms in order to induce higher level

abstractions that could better generalize to unseen examples in the test set. Though this is a very limited form

of generalization, it exemplifies the means by which inductive biases can be constructed to induce certain

behaviors in neural models. This section provides an overview of recent work for facilitating generalization

to new problems, new inputs and new outputs.

The advent of large-scale pre-training [Devlin et al., 2018; Radford et al., 2019] has been imperative

in facilitating generalization in dialog. Pre-trained models allow generalization both to new inputs and to

new problems. Pre-trained models can effectively represent a wide distribution of language, and therefore

facilitate generalization to inputs beyond those observed in a problem-specific training corpus. Better few-

shot generalization has been observed with pre-trained models in intent prediction [Casanueva et al., 2020],

slot filling [Coope et al., 2020], state tracking [Heck et al., 2020] and response generation [Peng et al.,

2020b]. Furthermore, a single pre-trained model can be adapted to many different dialog problems, without

significant modification to the model architecture. BERT [Devlin et al., 2018] has been used for intent

prediction [Chen et al., 2019a; Castellucci et al., 2019], slot filling [Chen et al., 2019a; Castellucci et al.,

2019], dialog state tracking [Heck et al., 2020] and dialog evaluation [Ghazarian et al., 2019; Sai et al., 2020;

Zhang et al., 2021b]. Similarly, the ConveRT model [Henderson et al., 2019], which was trained on dialog

data, has been shown to perform well on both intent prediction [Casanueva et al., 2020] and slot filling

[Coope et al., 2020]. Pre-trained models achieve strong performance on a variety of different downstream

problems and perform much better in few-shot settings.

While pre-trained models have exceled at few-shot generalization to new problems and domains, it is

considerably more difficult to generalize to new outputs (i.e., new intents, new slots, etc.) and to gener-

alize in a zero-shot setting. Chen et al. [2016] present a zero-shot approach for learning embeddings for

unseen intents, thereby allowing a model to be extended to predict an intent that was unseen at training time.

Bapna et al. [2017] show that slot names and their corresponding descriptions can be leveraged to implicitly
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align slots across domains and achieve better cross-domain generalization. Wu et al. [2019] similarly use

slot names, in combination with a generative model for state tracking, to obtain strong zero-shot results

for new slots. Shah et al. [2019] leverage examples for zero-shot slot filling and cross-domain generaliza-

tion. Generally, approaches for zero-shot generalizability leverage the similarity across different domains

(e.g., restaurant-area and hotel-area are conceptually similar). These approaches can be combined with

large-scale pre-trained models, to achieve generalization of language understanding across dissimilar do-

mains [Ruan et al., 2020]. Rastogi et al. [2020b] address zero-shot domain adaptation in state tracking by

leveraging BERT [Devlin et al., 2018] with a domain-specific API specification.

Zhao and Eskenazi [2018] present an approach for zero-shot end-to-end dialog that leverages the Action

Matching framework to learn a cross-domain latent action space. This cross-domain latent action space

serves as an alignment across different domains, thereby facilitating zero-shot generalization to new do-

mains. Qian and Yu [2019] use model-agnostic meta learning to attain stronger results in zero-shot dialog.

There is considerably less work in zero-shot generalization to new dialog tasks. This is in part a consequence

of the task-specific dialog policies (i.e., how should a system progress the conversation in order to achieve a

particular goal) that preclude generalization to new tasks in dialog. For example, it is challenging to transfer

an end-to-end dialog model to a new task if the model has no notion of the corresponding dialog policy.

This proposal studies this problem and aims to address it, in order to facilitate zero-shot generalization to

new tasks.
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Chapter 3

Self-Supervised Training as an Inductive
Bias

3.1 Introduction

Self-supervised learning is a long-standing concept in artificial intelligence research [Dayan et al., 1999].

Concretely, self-supervised learning aims to produce meaningful representations of un-annotated data through

reconstruction tasks, such as predicting the next word [Radford et al., 2018] or predicting a masked word

[Devlin et al., 2018]. By leveraging vast quantities of un-annotated data that is readily available (i.e., on

the internet), large-scale self-supervised pre-training [Devlin et al., 2018; Radford et al., 2018] has brought

about a paradigm shift in natural language processing research. Self-supervised training has been shown

to facilitate generalization [Wang et al., 2018], with pre-trained models achieving strong performance on a

variety of problems and in few-shot settings.

Self-supervised learning is in itself a form of inductive bias. The choice of data and the self-supervised

objectives influence what is learned by a data-driven model and can therefore be used to facilitate gener-

alization. As such, self-supervised training can be leveraged to define the set of assumptions used by an

intelligent system to predict outputs for unseen inputs (i.e., to generalize). Through self-supervised training,

data-driven models can learn more meaningful representations which thereby facilitate both generalization

to new inputs and generalization to new problems. A model that undergoes self-supervised pre-training

may be capable of generalizing to inputs beyond the limitations of the annotated corpus used for supervised

training, by leveraging meaningful representations learned during pre-training. Likewise, a model that un-

dergoes self-supervised training can learn sufficiently general representations that remove the necessity for

problem-specific architectures.

This chapter studies self-supervised learning as an inductive bias and as a means for facilitating gen-

eralization in dialog. Section 3.2 examines the role of the self-supervised training data as a mechanism

for generalizing to various problems and in few-shot settings. Experiments are carried out with both large-

scale pre-training and smaller-scale self-supervised pre-training/multi-tasking. Section 3.3 explores the use
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of self-supervised training objectives to model different phenomena for dialog evaluation. By construct-

ing self-supervised training objectives, Section 3.3 demonstrates generalization to new outputs without any

annotated training data.

3.2 Self-Supervised Training Data as an Inductive Bias

In an effort to facilitate generalization, this work studies the use of the self-supervised training data as an

inductive bias. The choice of the self-supervised training data influences the representations learned during

self-supervision. As such, knowledge of the desired type of generalization (i.e., the type of downstream

data that we want to generalize to) can be used to determine the most appropriate choice of self-supervised

training data. Furthermore, by learning sufficiently general representations – the same pre-trained model

can be leveraged for multiple downstream problems without many task-specific architectural modifications.

This work aims to address two research questions:

1. Does large-scale pre-training on open-domain dialog data result in better performance on down-

stream dialog tasks?

2. Does self-supervised training on specific dialog domains help to induce generalization to those do-

mains?

To address the first question, a BERT-base model is trained in a self-supervised manner on a large open-

domain dialog corpus to produce CONVBERT. By training on dialog data, CONVBERT should be better

suited to modelling dialog and therefore perform better in few-shot settings and better generalize to down-

stream dialog tasks. Experiments are carried out with CONVBERT on DialoGLUE [Mehri et al., 2020a],

which is a benchmark consisting of 7 task-oriented dialog datasets covering 4 distinct natural language

understanding tasks.

To address the second question, this work explores the use of task-adaptive self-supervised training as

a mechanism for inducing generalization to specific downstream domains and corpora. Rather than pre-

training on a large corpus, task-adaptive self-supervised training learns to model the data from the down-

stream corpus in a self-supervised manner. This work studies both task-adaptive pre-training and multi-

tasking. Furthermore, the effect of pre-training with multiple task-oriented corpora is studied.

Together, CONVBERT in combination with task-adaptive self-supervised training matches or exceeds

state-of-the-art results on five of the seven DialoGLUE datasets [Mehri et al., 2020a]. Most notably, a

+2.98 improvement is attained in the joint goal accuracy over the best dialog state tracking models on the

MultiWOZ corpus. The methods and the experiments presented in this section demonstrate that the choice

of self-supervised training data can serve as an inductive bias. The choice of data and self-supervised

training algorithm can influence what is learned by the model and thereby facilitate generalization both to

new problems and new inputs.
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3.2.1 Methods

This section describes the methods employed throughout this work. First, the architectures for the 4 different

DialoGLUE tasks (intent prediction, slot filling, dialog state tracking and semantic parsing) are introduced.

These architecture are built around an underlying BERT-like model, with minor task-specific modifications.

A sufficiently general model of dialog should work well for multiple different downstream problems, without

significant modification. Next, the CONVBERT model is introduced. CONVBERT is a BERT model that

was further pre-trained on a large open-domain dialog corpus. Finally, task-adaptive self-supervised training

is described. Task-adaptive training performs self-supervised training on the data in DialoGLUE to better

adapt pre-trained models to the downstream problems and domains.

Task-Specific Architectures

For each of the four different dialog tasks present in DialoGLUE, a task-specific architecture is defined.

These architectures are built around an underlying BERT-like model, with minor task-specific architectural

modifications.

Intent Prediction: A BERT-like model is fine-tuned to encode an utterance and predict its intent.

Specifically, the pooled representation produced by a BERT-like model is passed through a linear layer

to predict the intent class.

Slot Filling: For slot filling, the problem is formulated as IOB tagging [Ramshaw and Marcus, 1999]

wherein every token in the utterance is labeled as either being the beginning of a slot value (B-), inside a

slot value (I-) or not belonging to a slot value (O). A BERT-like model is used to produce a representation

of each token, which is then passed through a linear layer that predicts the appropriate tag (e.g., “B-time”,

“I-people”).

Semantic Parsing: The hierarchical representations of the TOP dataset are transformed into (i) a top-

level intent for the utterance which corresponds to the root of the tree and (ii) a label for each word of the

utterance which is the path from the root to each leaf node (which is always a word). Given this representa-

tion, a BERT-like model is trained to simultaneously predict the top-level intent for the utterance using the

pooled representation and the labels for each token using the token representation.

Dialog State Tracking: The state tracking architecture is inspired by TripPy Heck et al. [2020] which

uses an underlying BERT model and a triple copy strategy to perform state tracking. The TripPy model uses

(i) span prediction and a copy mechanism to extract values from a user utterance, (ii) a copy mechanism over

concepts mentioned by the system utterance and (iii) a copy mechanism over the DS memory, the existing

dialog state.

These architectures are held consistent throughout the experiments. An arbitrary BERT-like encoder

can be plugged into all of the aforementioned architectures. In this manner, the capabilities of the pre-

trained model can be evaluated on all of the DialoGLUE tasks, irrespective of the architecture. As such,

performance improvements are guaranteed to be a consequence of the improved representational power,

derived through self-supervised training.
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ConvBERT

Though large-scale pre-trained models (e.g., BERT) have exhibited strong language understanding capabil-

ities, recent work has suggested that they may be insufficient for modelling dialog, due to the intrinsically

goal-driven, linguistically diverse, multi-turn and often informal/noisy nature of dialog [Henderson et al.,

2019; Zhang et al., 2019c]. The unique challenges of modelling dialog have been addressed by training on

large amounts of conversational data, from online forums. This work extends these efforts by fine-tuning

BERT on a large open-domain dialog corpus consisting of nearly 700 million conversations to produce

CONVBERT.

By training CONVBERT with large amounts of open-domain dialog, it is hypothesized that the resulting

model is better able to produce semantically meaningful representations of utterances and multi-turn dialogs.

Specifically, an uncased BERT-base model is further pre-trained for 4 epochs on a large-open domain dialog

corpus scraped from Reddit, using a masked language modelling objective. During this pre-training, the

input is the last 3 turns of dialog context followed by the [SEP] token and the dialog response. The entire

input is truncated to have a sequence length of 72, and an Adam optimizer is used with an initial learning

rate of 3 · 10−4.

Task-Adaptive Training

Task-adaptive training is the process of adapting a pre-trained model to a specific task or domain, by per-

forming self-supervised training on the downstream corpus. While large-scale pre-trained models should

learn sufficiently general representations – differences between the pre-training data and the downstream

corpora may result in lower performance. Performing self-supervised training on the downstream corpus

used for fine-tuning has been shown to help with performance in few-shot settings and domain adaptation

[Mehri et al., 2019; Gururangan et al., 2020]. In order to adapt BERT-like models to the various DialoGLUE

tasks and domains, task-adaptive self-supervised training is leveraged. Specifically, self-supervised train-

ing is performed with the masked language modelling (MLM) objective on each dataset. Several methods

are explored for leveraging task-adaptive self-supervised training: (i) self-supervised pre-training prior to

fine-tuning on the specific task, (ii) multi-tasking by simultaneously performing self-supervised training and

fine-tuning on the task and (iii) both pre-training and multi-tasking. An example experimental setting is

as follows: (1) start with the pre-trained CONVBERT model, (2) conduct self-supervised pre-training on

the utterances of HWU, (3) fine-tune on HWU using the intent prediction architecture and simultaneously

perform self-supervised training on the utterances of HWU.

To further study the benefits of self-supervised training and the effects of the self-supervised training

data, both BERT and CONVBERT are further trained with a masked language modelling over the combi-

nation of all the DialoGLUE datasets to produce BERT-DG and CONVBERT-DG. With this intermediate

self-supervised training, the resulting models should be better adapted to handle task-oriented dialog and

therefore better generalize to the downstream problems and domains in DialoGLUE.
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3.2.2 Experiments

Experimental Setup

The experiments are carried out with four BERT-like models: (1) BERT-base, (2) CONVBERT which is

BERT pre-trained on a large corpus of open-domain dialogs, (3) BERT-DG which is BERT trained on the

full DialoGLUE data in a self-supervised manner and (4) CONVBERT-DG which is CONVBERT trained

on the full DialoGLUE data in a self-supervised manner.

Experiments are carried out with these four models in four different settings: (1) directly fine-tuning

on the target task, (2) self-supervised pre-training with MLM on the target dataset prior to fine-tuning, (3)

self-supervised multi-tasking with MLM on the target dataset during fine-tuning and (4) both pre-training

and multi-tasking with MLM.

Self-supervised MLM pre-training is performed for 3 epochs prior to fine-tuning. Fine-tuning on a target

task is carried out until the performance on the validation set does not improve for 10 epochs. During multi-

tasking, the training alternates each epoch between fine-tuning on the target task and self-supervised training

with MLM.

To assess the effectiveness of the pre-trained models in low-resource settings, few-shot experiments

carried out. In such experiments, self-supervised training is performed only on the few-shot data, which is

10% of the full data. The self-supervised pre-training and multi-tasking is performed with only the few-

shot versions of each dataset. However, both BERT-DG and CONVBERT-DG are trained with the full

DialoGLUE data, albeit in a self-supervised manner, meaning that they see more in-domain data than either

BERT or CONVBERT in the few-shot experiments. For all the few-shot experiments, each model is trained

five times with different random seeds and the average performance across the five runs is reported.

The evaluation metrics are consistent with prior work on these datasets. Intent prediction (BANKING77,

CLINC150, HWU64) is evaluated with accuracy. The slot filling tasks (RESTAURANT8K, DSTC8), are

evaluated with macro-averaged F-1 score as defined by Coope et al. [2020]. Exact-match is used for TOP,

which measures how often the hierarchical semantic representation is exactly reconstructed. Dialog state

tracking on MULTIWOZ is evaluated with joint goal accuracy.

Results

The results of the full data experiments are shown in Table 3.1. The proposed approaches attain a per-

formance gain over the vanilla BERT model [Devlin et al., 2018] across all seven datasets. These results

highlight the efficacy of both the CONVBERT model and the task-adaptive self-supervised training. Across

four datasets, the best results are attained by CONVBERT with both self-supervised pre-training and multi-

tasking. Table 3.2 compares to prior work, wherein it is shown that CONVBERT in combination with task-

adaptive training, matches or exceeds state-of-the-art performance across five out of seven of the datasets.

On the dialog state tracking task of MultiWOZ, the proposed approach attains a +2.98 improvement in

the joint goal accuracy over the prior state-of-the-art. These strong results, which hold true across several
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Model Average BANKING77 HWU64 CLINC150 RESTAURANT8K DSTC8 TOP MULTIWOZ
BERT 86.08 93.02 89.87 95.93 95.53 90.05 81.90 56.30

+ Pre 86.18 92.34 91.82 96.27 95.78 89.48 81.54 56.07
+ Multi 85.97 92.27 90.99 96.22 95.61 89.93 81.46 55.30
+ Pre, Multi 85.92 93.20 90.99 95.67 95.04 89.96 82.08 55.06

CONVBERT 86.01 92.95 90.43 97.07 95.90 87.58 82.13 56.00
+ Pre 86.19 93.25 92.84 97.09 95.33 87.02 82.00 55.67
+ Multi 85.97 93.20 91.36 97.09 95.39 90.02 82.63 56.48
+ Pre, Multi 86.89 93.44 92.38 97.11 95.44 91.20 82.08 56.56

BERT-DG 86.11 91.75 90.89 95.98 95.23 90.24 81.16 57.54
+ Pre 86.16 92.01 91.26 96.20 94.61 89.79 81.29 58.00
+ Multi 86.38 92.53 90.61 95.89 95.44 90.81 81.04 58.34
+ Pre, Multi 86.18 92.57 91.26 96.22 95.11 88.69 80.89 58.53

CONVBERT-DG 82.9 93.21 91.64 96.96 93.44 74.54 72.22 58.57
+ Pre 84.1 93.05 92.94 97.11 95.38 90.88 60.68 58.65
+ Multi 82.78 93.02 91.73 97.13 95.93 88.97 53.97 58.70
+ Pre, Multi 85.34 92.99 91.82 97.11 94.34 86.49 76.36 58.29

Table 3.1: Full data experiments on DialoGLUE. The average score on the DialoGLUE benchmark is shown
in the leftmost column. The evaluation metrics are intent prediction: accuracy, slot filling: macro-averaged
F-1, TOP: exact match: MultiWOZ: joint goal accuracy.

datasets, suggest that large-scale pre-training on open-domain dialog data in combination with task-adaptive

self-supervised training transfers effectively to several task-oriented dialog tasks.

When looking at the aggregate performance across all the DialoGLUE tasks, neither CONVBERT nor

task-adaptive training independently attain improvements over BERT. However by combining these two

approaches, there is a +0.81 improvement in the average score. This suggests that through large-scale pre-

training on open-domain dialog, CONVBERT learns skills that are valuable to DialoGLUE, however it is

only through task-adaptive training that these skills are transferred effectively to the downstream problems.

A noteworthy outcome of these experiments is the fact that the BERT model with task-adaptive self-

supervised training sometimes outperforms CONVBERT. This indicates that in certain settings, it is more

beneficial to perform self-supervised training on the the downstream dataset rather than a much larger, but

less relevant, dialog corpus. This particularly highlights the importance of the self-supervised data as a

mechanism for controlling what is learned by the model, and facilitating generalization to different tasks

and domains.

Performing self-supervised training across the combination of the DialoGLUE datasets gives mixed re-

sults. CONVBERT-DG attains a significant performance gain on MultiWOZ, suggesting that self-supervised

training on other task-oriented dialog corpora helps significantly in modelling MultiWOZ dialogs. Across

other datasets, it is only marginally better than the CONVBERT model and sometimes worse. Aside from

the unique case of MultiWOZ, it appears that self-supervised training with additional task-oriented dialog
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BANKING77 (accuracy)
USE [Casanueva et al., 2020] 92.81
ConveRT [Casanueva et al., 2020] 93.01
USE + ConveRT [Casanueva et al., 2020] 93.36
CONVBERT + Pre + Multi 93.44

HWU64 (accuracy)
USE [Casanueva et al., 2020] 91.25
ConveRT [Casanueva et al., 2020] 91.24
USE + ConveRT [Casanueva et al., 2020] 92.62
CONVBERT-DG + Pre 92.94

CLINC150 (accuracy)
USE [Casanueva et al., 2020] 95.06
ConveRT [Casanueva et al., 2020] 97.16
USE + ConveRT [Casanueva et al., 2020] 97.16
CONVBERT-DG + Multi 97.13

RESTAURANT8K (F-1)
Span-BERT [Coope et al., 2020] 93.00
V-CNN-CRF [Coope et al., 2020] 94.00
Span-ConveRT [Coope et al., 2020] 96.00
CONVBERT-DG + Multi 95.93

DSTC8 (F-1)
Span-BERT [Coope et al., 2020] 91.50
V-CNN-CRF [Coope et al., 2020] 91.25
Span-ConveRT [Coope et al., 2020] 94.00
CONVBERT + Pre + Multi 91.20

TOP (Exact Match)
RNNG [Gupta et al., 2018] 78.51
SR + ELMo [Einolghozati et al., 2019] 87.25
SEQ2SEQ-PTR [Rongali et al., 2020] 86.67
CONVBERT + Multi 82.63

MULTIWOZ (Joint Goal Accuracy)
DST-Picklist [Zhang et al., 2019a] 53.30
TripPy [Heck et al., 2020] 55.30
SimpleTOD [Hosseini-Asl et al., 2020] 55.72
CONVBERT-DG + Multi 58.70

Table 3.2: Comparison to prior work on all seven datasets. The proposed models match or exceed state-of-
the-art results on five out of seven datasets (marked with checkmarks), with significant improvements (+3)
on the MultiWOZ corpus.
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Model Average BANKING77 HWU64 CLINC150 RESTAURANT8K DSTC8 TOP MULTIWOZ
BERT 66.07 79.87 81.69 89.52 87.28 45.05 74.38 4.69

+ Pre 66.57 80.72 83.05 89.73 86.37 47.17 74.41 4.55
+ Multi 66.11 79.89 82.32 89.69 87.53 44.92 74.45 3.95
+ Pre, Multi 66.87 81.49 82.70 90.53 86.34 48.55 74.17 4.29

CONVBERT 68.03 83.63 83.77 92.10 86.90 49.08 74.86 5.90
+ Pre 67.36 83.68 83.77 92.10 86.90 45.20 74.92 5.09
+ Multi 68.16 83.15 82.32 92.33 86.71 50.49 75.21 5.48
+ Pre, Multi 68.22 83.99 84.52 92.75 86.17 48.40 78.84 6.87

BERT-DG 72.70 81.47 83.23 90.57 85.31 43.85 74.80 49.70
+ Pre 72.80 81.79 83.74 90.44 86.66 43.45 74.34 49.40
+ Multi 73.00 81.60 83.18 90.43 86.48 44.86 74.79 49.67
+ Pre, Multi 72.90 81.08 83.40 90.09 86.26 46.32 73.56 49.86

CONVBERT-DG 73.75 84.42 85.17 92.87 87.65 41.94 75.27 48.94
+ Pre 74.10 84.74 85.63 93.16 86.95 43.61 75.32 49.26
+ Multi 74.35 84.09 85.74 93.14 87.48 45.31 75.37 49.35
+ Pre, Multi 73.80 85.06 85.69 93.06 87.58 44.36 72.01 48.89

Table 3.3: Few-shot data experiments on DialoGLUE. The values in this table are averaged across five runs,
with different random seeds. The evaluation metrics are intent prediction: accuracy, slot filling: macro-
averaged F-1, TOP: exact match: MultiWOZ: joint goal accuracy.

data, beyond just the dataset in question, does not provide significant improvements. For two datasets,

DSTC8 and TOP, there is a decrease in performance which may be indicative of catastrophic forgetting.

Namely, the CONVBERT-DG model may have lost the language understanding capabilities captured by the

CONVBERT model through the additional self-supervised training, and only partially recovers this through

the task-specific self-supervised training.

While the proposed models achieve state-of-the-art performance across five of the seven tasks, they

underperform on TOP and DSTC8. On the TOP dataset, the best models use sophisticated architectures

which have been tailored to the task of semantic parsing [Einolghozati et al., 2019; Rongali et al., 2020]. In

this work, the objective is to improve the underlying language encoders in a manner that results in consistent

performance gains across all of the tasks. The primary goal is to improve the aggregate improvement across

the DialoGLUE benchmark, rather than the performance on a single task. As such, this work tries to avoid

complex task-specific architectures when simpler models achieve competitive results.

The results of the few-shot experiments are shown in Table 3.3. The few-shot experiments are par-

ticularly important for assessing the generalizability of the methods and their ability to transfer to different

downstream problems and domains. In low data environments, self-supervised training on the entirety of the

DialoGLUE datasets results in performance gains – with BERT-DG and CONVBERT-DG doing better than

BERT and CONVBERT respectively. However, this is not entirely surprising as these models are exposed

to more utterances from every dataset, albeit without any of the labels.
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Most significantly, on MultiWOZ there is a 40 percent difference between BERT-DG and CONVBERT-

DG over BERT and CONVBERT. For state tracking in particular, it appears that observing additional dialog

data in a self-supervised setting, results in significant improvements. This may suggest that dialog state

tracking is more dependent on having semantically meaningful representations of dialog.

Self-supervised training on the same dataset also helps significantly in few-shot environments. Across

almost every dataset, the best result is obtained through some form of task-adaptive MLM training. Espe-

cially in settings with fewer training examples, adapting the pre-trained models to the domains of the dataset

is necessary for good performance on the downstream problems.

CONVBERT is also far more effective in the few-shot experiments, than it was in the full data exper-

iments with a +1.96 point improvement in the aggregate score over BERT. While the full datasets may be

sufficient to effectively transfer BERT to task-oriented dialog, with only 10% of the data, the benefits of the

large-scale open-domain pre-training are far clearer.

3.2.3 Discussion

The work described in this section validates the use of self-supervised training data as an inductive bias.

The experiments carried out aim to address two research questions, about the efficacy of both open-domain

dialog data and domain-specific dialog data as a means of inducing generalization.

The strong performance of CONVBERT, at least in the few-shot settings, provides an answer to the first

research question. Pre-training on open-domain dialog data results in better performance on downstream

dialog tasks. However, as demonstrated by the results on the full-data setting, this effect is diminished by a

large downstream corpus. On average, effect of task-adaptive self-supervised training is insignificant on its

own. In both the full data and few-shot setting, conducting task-adaptive self-supervised training provides

minute gains. In the few-shot setting, performance on some of the downstream problems is improved more

significantly through task-adaptive training, however the improvement is insignificant on average. It is

only when combined with CONVBERT that task-adaptive self-supervised training achieves better results in

both the full-data and few-shot settings. Pre-training on the entirety of the DialoGLUE data unsurprisingly

attains strong results in the few-shot setting. This suggests that using a larger un-annotated corpus for

self-supervised training from the same domains can drastically improve performance on the downstream

problem.

The few-shot results, especially, address the second research question. Self-supervised training on spe-
cific dialog domains can induce generalization, both to new inputs (i.e., in the few-shot settings) and to

new problems (i.e., same model works for multiple downstream corpora/tasks). The performance of BERT-

DG and ConvBERT-DG, particularly demonstrate the effectiveness of leveraging additional self-supervised

training data from the same domains. However, even in the absence of additional data, task-adaptive self-

supervised training on the same domains achieves strong performance gains especially when coupled with

CONVBERT.

This work studies the role of the self-supervised training data as an inductive bias. Choosing the data
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used for self-supervised pre-training or task-adaptive self-supervised training, influences the representations

learned by the model. The experiments in this section demonstrate that choosing self-supervised training

data that is similar to the downstream corpus can often induce better performance, especially when this data

is not already observed during downstream fine-tuning (e.g., the BERT-DG and CONVBERT-DG few-shot

experiments). In this manner, a developer that is aware of the desired type of generalization can choose the

data used for self-supervised learning in order to best facilitate the necessary generalization.

3.3 Self-Supervised Training Objectives as an Inductive Bias

The lack of meaningful automatic evaluation metrics is a significant impediment for open-domain dialog

generation research. Standard language generation metrics have been shown to be ineffective for dialog

evaluation [Deriu et al., 2019; Liu et al., 2016]. Without well-accepted, meaningful automatic metrics,

open-domain dialog researchers have come to rely on human evaluation. Due to its time- and cost-intensive

nature, human evaluation is typically only used for the final dialog model. As such, during development

dialog systems are generally optimized for poorly-correlated automatic metrics (e.g., F-1, BLEU, PPL)

which can result in sub-par human evaluation scores [Dinan et al., 2019]. To facilitate development of

open-domain dialog models with meaningful automatic metrics, this work presents the UnSupervised and

Reference free (USR) evaluation metric for dialog.

Standard automatic metrics for evaluating dialog generation (e.g., BLEU, F-1, METEOR, ROUGE)

have several shortcomings that make them unsuitable for dialog evaluation: (1) The one-to-many nature

of dialog [Zhao et al., 2017b] makes word-overlap metrics ineffective for scoring valid system output that

deviates from the ground-truth response [Liu et al., 2016; Gupta et al., 2019]. (2) Human evaluation of

dialog typically measures multiple properties (e.g., appropriate, interesting, consistent). Automatic metrics

on the other hand, condense the multi-faceted nature of dialog quality to a single uninterpretable metric.

(3) There are many definitions of what a good dialog is and, as such, it is not feasible to construct a “one

size fits all” metric. Depending on the task and the data, the desired qualities of a dialog system may differ

Walker et al. [1997]; Deriu et al. [2019].

The problem of dialog evaluation is inherently one of generalization. To estimate the quality of gen-

erated responses for open-domain dialog, an evaluation metric must be able to model language it has not

observed at training time. In part, this is because there is limited quality-annotated data (i.e., dialog context,

response, and quality score) for training evaluation metrics. Further, the domain and the topic of the dialogs

is generally unbounded in open-domain dialog – therefore an effective dialog evaluation metric must be able

to generalize to a wide variety of inputs. In addition to requiring generation to new inputs, dialog evaluation

requires generalization to new outputs. Dialog evaluation is multi-faceted and consists of multiple different

qualities (e.g., relevance, fluency, engagingness). Without training data for these various qualities, a dialog

evaluation metric must generalize to new outputs in an unsupervised or self-supervised manner.

This work studies the role of self-supervised training objectives as a mechanism for facilitating gener-

alization to new inputs and new outputs. USR relies on self-supervised training objectives that approximate
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different qualities for open-domain dialog evaluation. Three self-supervised objectives are designed as a

proxy for five different qualities of dialog (relevant, fluent, interesting, etc.). The task of open-domain

dialog evaluation fundamentally requires generalization, both to new inputs (topics, domains, etc.) and

new outputs (different qualities). Without any annotated data, the proposed USR metric must rely on self-

supervised training objectives that aim to model different dialog qualities. Through self-supervised training

with specific objectives, the resulting models are able to model different qualities and achieve reasonable

correlations with human judgments. USR (1) alleviates the one-to-many issue of standard metrics through

its reference-free nature, (2) produces interpretable measures for multiple desirable properties of dialog, and

(3) provides a configurable mechanism for combining several sub-metrics into an overall quality score.

To evaluate the performance of USR, human quality annotations were collected for models trained on

the Topical-Chat [Gopalakrishnan et al., 2019] and the PersonaChat corpora [Zhang et al., 2018]. USR is

shown to strongly correlate with human judgment on both Topical-Chat (turn-level Spearman: 0.42, system-

level Spearman: 1.0) and PersonaChat (turn-level Spearman: 0.48 and system-level Spearman: 1.0). The

strong correlation with human judgment across two datasets and a variety of model types shows that USR

is a valuable tool for the dialog community. Further, since USR does not require any explicit supervision, it

has the potential to generalize to several dialog tasks and datasets.

3.3.1 Methods

This section describes the USR metric, an unsupervised, reference-free evaluation metric for dialog. USR

leverages pre-trained language models, specifically RoBERTa [Liu et al., 2019b], to measure various quali-

ties of dialog. USR is designed to be reference-free because there is no one right answer due to the inherent

one-to-many nature of dialog [Zhao et al., 2017b].

Several sub-metrics were developed for five different qualities of dialog: understandable, natural, in-

teresting, maintains context and uses knowledge1. Each of these sub-metrics is trained in a self-supervised

manner with a specific training objective, which aims to approximate a specific quality. Each of USR’s

sub-metrics assess specific dialog qualities, and USR aggregates the outputs of these sub-metrics to produce

an overall assessment of a response. By aggregating several sub-metrics to form an overall score, USR

facilitates better understanding the performance of a response generation model.

Masked Language Modelling

The masked language modelling (MLM) sub-metric aims to approximate whether an utterance is under-

standable and natural. The sub-metric fine-tunes RoBERTa [Liu et al., 2019b] in a self-supervised manner

with a masked language modelling training objective. By fine-tuning on a specific corpus, either TopicalChat

[Gopalakrishnan et al., 2019] or PersonaChat [Zhang et al., 2018], the resulting sub-metric is better suited

to evaluate whether a particular response matches the language of the corpus. By computing the likelihood

1A thorough definition of these qualities can be found in Mehri and Eskenazi [2020b].
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Figure 3.1: Visualization of the masked language modelling (MLM) metric. Context words are in grey;
response words are in red. The red words are masked, and RoBERTa must predict the likelihood of their
true value (shown in green).

of the response estimated by the fine-tuned RoBERTa model, the MLM sub-metric can identify erroneous

and potentially non-fluent responses.

The RoBERTa-base model [Liu et al., 2019b] is fine-tuned in a self-supervised manner with a masked

language modelling objective (MLM) on the training set of a dialog corpus, either TopicalChat [Gopalakr-

ishnan et al., 2019] or PersonaChat [Zhang et al., 2018], using the implementation open-sourced by Wolf

et al. [2019]. The MLM fine-tuning is performed on only the dialog, without any of the facts, for a single

epoch.

RoBERTa uses both past and future context to predict a probability distribution for a masked word. The

input sequence to MLM is a concatenation of a dialog context, c, and a response, r. One word at a time,

each word in r is masked and its log likelihood is computed. Given the masked log-likelihood for the i-th

word of r as li, the value of the metric is then computed to be −
∑|r|

i li. Figure 3.1 visualizes this process.

Dialog Retrieval Metrics

Two self-supervised training objectives are defined in order to approximate three dialog qualities: maintains

context, interesting and uses knowledge. Both training objectives are based on dialog retrieval. Conditioned

on some context x, a response r and a binary label y ∈ {0, 1} indicating whether r is the true response or a

negatively sampled one, both training objectives model the probability P (y = 1| x, r).
To measure the qualities maintains context and interesting, the value of x is defined to be the concatena-

tion of the dialog history, c, and any knowledge that the response may have been conditioned on, f . This is
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intuitive for maintains context, as during self-supervision the sub-metric learns to score relevant responses

higher than negatively sampled responses. As such, a generated response that maintains context should have

a higher P (y = 1| c, f, r). The same model is also a good estimator if whether a response is interesting, be-

cause a dull or generic response (e.g., ‘ok’ or ‘that is cool’) will occur more frequently in the training corpus

and is therefore more likely to be a negatively sampled response. In contrast, an interesting/unique response

is less likely to be a negatively sampled response. As such, responses that are frequent in the dataset and

therefore dull/generic will have a lower P (y = 1| c, f, r) score.

To measure uses knowledge, x is defined to be the knowledge the response is conditioned on. The

model measures P (y = 1| f, r). During training, the model learns to produce higher scores for responses

that leverage the knowledge, and a lower score for negatively sampled responses. As such, when used for

evaluation, the model will produce a higher score for responses that effectively use the provided knowledge.

USR

Given the three sub-metrics which approximate the five dialog qualities, USR combines the scores into an

overall measure that correlates well with overall quality ratings for each response.

Given a dataset of human annotations for the five dialog qualities and an overall quality score, a regres-

sion model is trained to predict the overall score from the quality scores. The predictions of this regression

model attained a 0.9654 Spearman correlation with the original scores. To combine the outputs of the three

sub-metrics into an overall score for the response, the same regression model is leveraged by USR.

USR combines its sub-metrics into one measure of overall quality. This combination is configurable,

adaptable to different datasets or tasks. For example, if a specific application prefers natural responses over

interesting ones, the weights of the regression model can be adjusted. In this manner, USR could potentially

be adapted to different settings or to the preferences of specific users.

3.3.2 Experiments

To assess the performance of the USR metric, as well as the three sub-metrics (MLM, USR-DRc and USR-

DRf), several experiments are carried out. The objective of these experiments is to measure the correlation

of various automatic evaluation metrics to human judgments.

Human Quality Annotations

To measure the correlation of various automatic metrics to human judgments, a dataset of human quality

annotations was collected. For both PersonaChat and TopicalChat, several generation models were trained

and used to produce multiple responses. In addition to the model-generated responses, human produced an

additional response. These responses were then annotated by three individuals each, with each response

being annotated for the five specific dialog qualities (understandable, natural, interesting, maintains context,

uses knowledge) as well as a measure of overall quality. More details about the collection of this dataset can

be found in Mehri and Eskenazi [2020b].
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Metric Spearman Pearson
Understandable

BERTScore (base) 0.2502 0.2611
USR - MLM 0.3268 0.3264
USR 0.3152 0.2932

Natural
BERTScore (base) 0.2094 0.2260
USR - MLM 0.3254 0.3370
USR 0.3037 0.2763

Maintains Context
METEOR 0.3018 0.2495
USR - DR (x = c) 0.3650 0.3391
USR 0.3769 0.4160

Interesting
BERTScore (base) 0.4121 0.3901
USR - DR (x = c) 0.4877 0.3533
USR 0.4645 0.4555

Uses Knowledge
METEOR 0.3909 0.3328
USR - DR (x = f) 0.4468 0.2220
USR 0.3353 0.3175

Table 3.4: Turn-level correlations on Topical-Chat. We show: (1) best non-USR metric, (2) best USR
sub-metric and (3) USR metric. All measures in this table are statistically significant to p < 0.01.

Results

The performance of several automatic metrics, including the proposed USR metric, is evaluated by measur-

ing correlation to human judgements. The output of the sub-metrics that approximate each dialog quality

are used as input for the regression model of the USR metric. While the best performing sub-metrics are not

consistent across the two datasets, the USR metric nonetheless exhibits strong results.

Table 3.4 shows turn-level correlations of the best automatic metrics for each dialog quality on Topical-

Chat. USR is shown to strongly outperform both word-overlap and embedding-based metrics across all of

the dialog qualities. Interestingly, the best non-USR metric is consistently either METEOR or BERTScore

– possibly because both methods are adept at comparing synonyms during evaluation. For some dialog

qualities, the overall USR metric outperforms the best sub-metric. For example, USR does better for main-

tains context than USR-DR. This is likely because the information from the other sub-metrics (e.g., uses

knowledge) is valuable and effectively leveraged by USR.

Table 3.5 reports the turn-level correlations of the best automatic metrics for each dialog quality on

the PersonaChat corpus. Across all dialog qualities, USR strongly outperforms the word-overlap and

embedding-based metrics. Conversations in PersonaChat generally consist of individuals communicating

facts from their own persona in a relevant and coherent manner. As such, when models trained on Per-
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Metric Spearman Pearson
Understandable

BERTScore (base) 0.0685 0.0672
USR - MLM 0.1186 0.1313
USR 0.1324 0.1241

Natural
VectorExtrema 0.1375 0.1458
USR - DR (x = c) 0.2291 0.1733
USR 0.2430 0.1862

Maintains Context
METEOR 0.2564 0.2500
USR - DR (x = c) 0.5625 0.6021
USR 0.5280 0.6065

Interesting
BERTScore (base) 0.0491 0.0325
USR - DR (x = c) 0.2634 0.0606
USR 0.0171 0.0315

Uses Knowledge
METEOR 0.1719 0.1678
USR - DR (x = c) 0.6309 0.4508
USR 0.3177 0.4027

Table 3.5: Turn-level correlations on Persona-Chat. We show: (1) best non-USR metric, (2) best USR
sub-metric and (3) USR metric. All values with p > 0.05 are italicized.
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Metric Spearman Pearson
Word-Overlap Metrics

F-1 0.1645 0.1690
BLEU-1 0.2728 0.2876
BLEU-2 0.2862 0.3012
BLEU-3 0.2569 0.3006
BLEU-4 0.2160 0.2956
METEOR 0.3365 0.3908
ROUGE-L 0.2745 0.2870

Embedding Based Metrics
Greedy Matching 0.1712 0.1943
Embedding Average 0.1803 0.2038
Vector Extrema 0.2032 0.2091
Skip-Thought 0.1040 0.1181
BERTScore (base) 0.3229 0.3540
BERTScore (large) 0.2982 0.3252

Reference Free Metrics
USR - MLM 0.3086 0.3345
USR - DR (x = c) 0.3245 0.4068
USR - DR (x = f) 0.1419 0.3221
USR 0.4192 0.4220

Table 3.6: Turn-level correlations between all automatic metrics and the Overall Quality ratings for the
Topical-Chat corpus. All values with p > 0.05 are italicized.
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Metric Spearman Pearson
Word-Overlap Metrics

F-1 0.1422 0.1241
BLEU-1 0.0434 0.0469
BLEU-2 0.1122 0.0943
BLEU-3 0.1202 0.0924
BLEU-4 0.1353 0.0899
METEOR 0.2527 0.2713
ROUGE-L 0.0659 0.0385

Embedding Based Metrics
Greedy Matching 0.0916 0.0625
Embedding Average 0.1182 0.1428
Vector Extrema 0.1570 0.1410
Skip-Thought -0.0393 -0.0452
BERTScore (base) 0.1690 0.1526
BERTScore (large) 0.1518 0.1211

Reference Free Metrics
USR-MLM 0.0795 0.0788
USR-DR (x = f) -0.0495 -0.0454
USR-DR (x = c) 0.4814 0.6087
USR 0.4693 0.4115

Table 3.7: Turn-level correlations between all automatic metrics and the Overall Quality ratings for the
PersonaChat corpus. All values with p > 0.05 are italicized.
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sonaChat produce subpar outputs, it is generally because the outputs either (1) do not effectively use the

persona or (2) are not relevant/coherent to the dialog context. This explains why the correlations are sig-

nificantly higher for maintains context and uses knowledge. As a consequence of PersonaChat’s strong

dependency on both the dialog context and the persona, USR-DR (x = c) which uses both the dialog context

and the persona to perform dialog retrieval, generally outperforms all other metrics.

Table 3.6 shows turn-level correlation with the overall quality ratings on Topical-Chat, for all of the

automatic metrics. USR shows a strong improvement over all other methods. This strong performance can

be attributed to two factors: (1) the ability of MLM and DR to accurately quantify qualities of a generated

response without a reference response, and (2) the ability of USR to effectively combine MLM and DR into

a better correlated overall metric.

USR shows a similar improvement over all other metrics on PersonaChat, as shown in Table 3.7. How-

ever, DR (x = c) outperforms USR despite the fact that four out of the five sub-metrics input into the USR

regression are DR (x = c). This result is probably due to PersonaChat’s strong dependancy on both dialog

context and persona, both of which DR (x = c) explicitly leverages.

The system-level correlation between all automatic metrics and the overall quality ratings is compared.

USR significantly (p < 0.01) outperforms all other metrics with a Spearman correlation of 1.0 on both

datasets and Pearson correlations of 0.92 (Topical-Chat) and 0.82 (PersonaChat). The full set of system-

level correlations can be found in Mehri and Eskenazi [2020b].

These results demonstrate USR’s effectiveness. It strongly outperforms other metrics on both turn-

level and system-level correlations. This signifies the effectiveness of self-supervised training objectives

as a means of influencing what is learned by the model, and facilitating generalization to multiple dialog

qualities in the absence of annotated training data.

3.3.3 Discussion

The strong performance of USR across both Topical-Chat and PersonaChat validates the initial hypothesis

that self-supervised training objectives can be leveraged as an inductive bias. Without any annotated training

data, the USR metric is shown to effectively approximate five different fine-grained qualities of dialog and

aggregate these into an overall quality score.

This work demonstrates that the choice of self-supervised training objective can influence what a model

learns, and therefore be leveraged to model different qualities of dialog. Masked language modelling is

shown to effectively model understandability/fluency. Dialog retrieval (using both the dialog history and

the knowledge) is shown to approximate maintains context/interesting and dialog retrieval (with only the

knowledge) can estimate whether a response uses knowledge.

A limitation of this work is that the self-supervised models that make up USR are unable to extend

beyond the limitations of their specific training data. For example, the MLM sub-metric will assign a lower

likelihood to responses that differ significantly from the language of the training corpus. While this fine for

evaluating response generation models that are trained only on the datasets that were used to fine-tune USR,
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it is a problem when considering response generation models trained on other corpora. This problem can be

mitigated by using the learnings from the previous study to extend the capabilities of the USR metric (or an

equivalent), by selecting the most appropriate training data for self-supervised training.

3.4 Conclusion

This chapter demonstrates that self-supervised training is an inductive bias and is central to the notion of

generalization. The first study shows that the self-supervised training data is an inductive bias by which

a system developer can influence the data-driven model and thereby induce desired generalizations. Con-

cretely, through CONVBERT and task-adaptive self-supervised training it is found that training on data

which is similar to the downstream corpus induces better few-shot generalization. The second study vali-

dates the use of the self-supervised training objectives as an inductive bias that influences what is learned

by the model and can therefore be leveraged to facilitate zero-shot generalization to new outputs. The USR

metric is shown to correlate well with human judgements of dialog quality, through self-supervised training

with specific objectives. These two studies demonstrate that self-supervised training serves as an inductive

bias, by which generalization can be induced.
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Chapter 4

Inductive Bias in the Model Architecture

4.1 Introduction

The design of a model architecture defines the mechanisms by which a data-driven model processes inputs

and generates outputs. The architecture plays an important role in defining the abstractions learned by a

model, particularly the set of assumptions by which it makes predictions for unobserved inputs (i.e., the

mechanism by which it generalizes). Hand-crafted architectures for dialog models achieved strong per-

formance on a variety of problems [Bhargava et al., 2013; Hakkani-Tür et al., 2016; Serban et al., 2017].

Researchers incorporate knowledge about the domain and the specific problem into the design of a hand-

crafted architecture, in order to influence the types of abstractions learned by the model. For example, the

Hierarchical Encoder Decoder (HRED) [Serban et al., 2017] is designed to first encode every utterance in a

dialog and then produce a dialog-level representation by considering a sequence of utterance-level represen-

tations. This hierarchical structure is an inductive bias, motivated by the inherent hierarchical structure in

dialog, that forces a data-driven model to independently consider each utterance prior to producing a dialog-

level representation. These inductive biases allowed the model to learn higher-level abstractions from a

given corpus, in order to achieve better performance on a held-out test set.

This chapter explores mechanisms of incorporating inductive biases into the model architecture in order

to induce generalization. Through modifications to the model architecture and the training algorithm, the

resulting models are forced to learn specific high-level abstractions which are conductive to different types of

generalization. The design of these inductive biases is motivated by knowledge of the problem (i.e., the task,

data, evaluation metric) and the desired generalization. Through modifications to the model architecture, the

process of predicting an outputs from a given input is prescribed by the system developer (i.e., compare an

input to examples from the training set before predicting an output). Through controlling the process and

the learned abstractions, certain types of generalization can be induced. The work in this chapter aims to

validate the hypothesis that architectural modifications, motivated by domain knowledge of the problem and

the desired generalizations, can effectively serve as inductive biases that facilitate generalization.

Two studies are carried out pertaining to incorporating inductive biases into neural models of dialog.
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Section 4.1 presents Structured Fusion Networks, which incorporate the traditional dialog pipeline into

neural response generation models. Structured Fusion Networks prescribe a specific procedure by which

the model must perform the task of response generation. Through this specific procedure, which serves as

an inductive bias, the resulting model performs better in low-resource settings and can generalize to new

domains with very little data. Section 4.2 introduces example-driven training for the problem of intent

prediction, and demonstrates generalization to new domains and to new outputs. In example-driven training,

the output class is predicted by measuring the similarity of a given input with a set of examples. By making

the representation-to-intent mapping an explicit non-parametric process (rather than an implicitly learned

set of weights in a classification layer), the resulting model is able to generalize to new outputs and can

predict unseen intents, given the corresponding examples.

4.2 Structured Fusion Networks

End-to-end neural dialog systems have exhibited strong performance [Vinyals and Le, 2015; Dinan et al.,

2019]. However such models suffer from a variety of shortcomings, including: a data-hungry nature [Zhao

and Eskenazi, 2018], a tendency to produce generic responses [Li et al., 2016b], an inability to generalize

[Mo et al., 2018; Zhao and Eskenazi, 2018], a lack of controllability [Hu et al., 2017], and divergent behavior

when tuned with reinforcement learning [Lewis et al., 2017]. Traditional dialog systems, which are generally

free of these problems, consist of three distinct components: the natural language understanding (NLU),

which produces a structured representation of an input (e.g., a belief state); the natural language generation

(NLG), which produces output in natural language conditioned on an internal state (e.g. dialog acts); and

the dialog manager (DM) [Bohus and Rudnicky, 2009], which describes a policy that combines an input

representation (e.g., a belief state) and information from some database to determine the desired continuation

of the dialog (e.g., dialog acts). A traditional dialog system, consisting of an NLU, DM and NLG, is pictured

in Figure 4.1.

The structured components of traditional dialog systems facilitate effective generalizability, interpretabil-

ity, and controllability. The structured output of each component allows for straightforward modification,

interpretation and tuning of the system. On the other hand, end-to-end neural models of dialog lack an

explicit structure and are treated as a black box. To this end, this work explores several methods of in-

corporating the structure of traditional dialog systems into neural dialog models. In this manner, domain

knowledge of dialog can be used to prescribe a specific procedure upon a model of dialog. The structured

pipeline is used as an inductive bias in the neural architecture, to improve performance in low-resource set-

tings and to facilitate generalization to new inputs. This work studies the effect of inductive biases in the

model architecture, motivated by decades of research in pipeline dialog systems, as a means of inducing

generalization to new inputs and domains.

First, several neural dialog modules are constructed to serve the role of the NLU, the DM and the NLG.

Next, a number of methods are proposed for incorporating these dialog modules into end-to-end dialog

systems, including Naïve Fusion, Multitask Fusion and Structured Fusion Networks (SFNs). This work will
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Figure 4.1: A traditional dialog system consisting of a natural language understanding (NLU), dialog man-
ager (DM) and natural language generation (NLG).

show that SFNs obtain strong results on the MultiWOZ dataset [Budzianowski et al., 2018] both with and

without the use of reinforcement learning. Due to the explicit structure of the model, SFNs are shown to

exhibit several valuable properties including improved performance in reduced data scenarios, better domain

generalizability and robustness to divergence during reinforcement learning [Lewis et al., 2017].

4.2.1 Methods

This section describes the methods employed for the task of dialog response generation. First, the baseline

sequence-to-sequence model proposed by Budzianowski et al. [2018] is described. Next, several methods of

incorporating a pipeline structure into end-to-end neural dialog models are introduced. Finally, a reinforce-

ment learning paradigm with structured fusion networks is defined.

Sequence-to-Sequence

The baseline model for the task of response generation, depicted in Figure 4.2, consists of a standard

encoder-decoder framework [Sutskever et al., 2014], augmented with a belief tracker (obtained from the

annotations of the dialog state) and a database vector. The dialog system is tasked with producing the

appropriate system response, given a dialog context, an oracle belief state representation and a vector corre-

sponding to the database output.

The dialog context is encoded using an LSTM [Hochreiter and Schmidhuber, 1997] sequence-to-sequence

network [Sutskever et al., 2014]. Experiments are conducted with and without an attention mechanism [Bah-
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danau et al., 2015]. Given the final encoder hidden state, het , the belief state vector, vbs, and the database

vector, vdb, Equation 4.1 describes how the initial decoder hidden state is obtained.

hd0 = tanh (Weh
e
t +Wbsvbs +Wdbvdb + b) (4.1)

Figure 4.2: A diagram of the baseline sequence-to-sequence architecture. The attention mechanism is not
visualized, however experiments are conducted both with and without attention.

Neural Dialog Modules

As depicted in Figure 4.1, a traditional dialog system consists of the NLU, the DM and the NLG. The NLU

maps a natural language input to a belief state representation (BS). The DM uses the belief state and some

database output, to produce dialog acts (DA) for the system response. The NLG uses the dialog acts to

produce a natural language response.

A neural dialog module is constructed for each of these three components. A visualization of these

architectures is shown in Figure 4.3. The NLU architecture uses an LSTM encoder to map the natural

language input to a vector representation, ht, which is then passed through a linear layer and a sigmoid

function to obtain a multi-label prediction of the belief state. The DM module projects the belief state and

database vector into a latent vector, through the use of a linear layer with a ReLU activation, which is then

passed through another linear layer and a sigmoid function to predict the dialog act vector. The neural
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Figure 4.3: A visualization of the neural architectures for each of the three modules of traditional dialog
systems.

architecture corresponding to the NLG is a conditioned language model with its initial hidden state given by

a linear encoding of the dialog acts, belief state and database vectors.

The following equations define the structure of the modules, where the gt subscript on an intermediate

variable denotes the use of the ground-truth value:

bs = NLU(context) (4.2)

da = DM(bsgt, db) (4.3)

response = NLG(bsgt, db, dagt) (4.4)

Naïve Fusion

Naïve Fusion (NF) is a straightforward mechanism for using the neural dialog modules for end-to-end dialog

response generation. Both Zero-Shot Naïve Fusion and Naïve Fusion with Fine-tuning are explored.

In Zero-Shot Naïve Fusion, each dialog module is trained independently, meaning that it is given the

ground truth input and supervision signal. However, during inference, the intermediate values (e.g., the

dialog act vector) do not necessarily exist and the outputs of other neural modules must be used instead. For
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example, the DM module is trained given the ground-truth belief state as input, however during inference it

must rely on the belief state predicted by the NLU module. This results in a propagation of errors, as the

DM and NLG may receive imperfect input.

Zero-Shot Naïve Fusion combines the pre-trained neural modules at inference time. The construction of

the response conditioned on the context, is described as follows:

bs = NLU(context) (4.5)

response = NLG(bs, db,DM(bs, db)) (4.6)

Since the forward propagation described in Equations 4.5 and 4.6 is continuous and there is no sampling

procedure until the response is generated, Naïve Fusion can be fine-tuned for the end-to-end task of dialog

generation. In Naïve Fusion with Fine-tuning, The pre-trained neural modules are combined as described

above, and fine-tuned on the task of dialog generation using the same data and learning objective as the

baseline sequence-to-sequence model.

Multi-task Fusion

The structured pipeline of traditional dialog system can be incorporated into neural architectures through the

use of multi-tasking. Multi-task Fusion (MF) is a method where the end-to-end generation task is learned

simultaneously with the aforementioned dialog modules. The multi-tasking setup is seen in Figure 4.4.

By sharing the weights of the end-to-end architecture and each respective module, the learned represen-

tations should become stronger and more structured in nature. For example, the encoder is shared between

the NLU module and the end-to-end task. As such, it will learn to both represent the information necessary

for predicting the belief state vector and any additional information useful for generating the next utterance.

Multi-tasking in this manner serves as an inductive bias that can facilitate generalization. Given an unob-

served input, the encoder will produce representations which are more grounded in the information relevant

to the belief state.

Structured Fusion Networks

Structured Fusion Networks (SFNs), depicted in Figure 4.5, use the independently pre-trained neural dialog

modules for the task of end-to-end dialog generation. Rather than fine-tuning or multi-tasking the indepen-

dent modules, SFNs aim to learn a higher-level model on top of the neural modules to perform the task of

end-to-end response generation.

The output of the NLU is concatenated at each time-step of the encoder input. The output of the DM

is similarly concatenated to the input of the linear layer between the encoder and the decoder of the higher-

level model. The output of the NLG, in the form of logits at a decoding time-step, is combined with the

hidden state of the decoder via cold-fusion [Sriram et al., 2017]. Given the NLG output as lNLG
t and the

higher-level decoder hidden state as st, the cold-fusion method is described as follows:
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Figure 4.4: A depiction of Multitask Fusion, where the individual neural modules are learned simultane-
ously with the end-to-end task of dialog generation. The dashed boxes contain the individual components,
while the red arrows depict forward propagation for the end-to-end task. The red arrows are the process
used during response generation.

hNLG
t = DNN(lNLG

t ) (4.7)

gt = σ(W [st;h
NLG
t ] + b) (4.8)

sCF
t = [st; gt ◦ hNLG

t ] (4.9)

yt = softmax(DNN(sCF
t )) (4.10)

By pre-training the modules and using their structured outputs, the higher-level model does not have

to re-learn and re-model the dialog structure (i.e., representing the belief state and dialog acts). Instead, it

can focus on the more abstract modelling that is necessary for the task, including recognizing and encoding

complex natural language input, modelling a policy, and effectively converting a latent representation into a

natural language output according to the policy.

The SFN architecture may seem complicated due to the redundancy of the inputs. For example, the
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Figure 4.5: The Structured Fusion Network. The grey dashed boxes correspond to the pre-trained neural
dialog modules. A higher-level is learned on top of the pre-trained modules, as a mechanism of enforcing
structure in the end-to-end model.

context is passed to the model in two places and the database vector in three places. This redundancy is

necessary for two reasons. First, each of the neural modules must function independently and thus needs

sufficient inputs. Second, the higher-level model should be able to function well independently. If any of

the neural modules was to be removed, the SFN should be able to perform reasonably. This means that the

higher-level module should not rely on any of the neural modules to capture information about the input

and therefore allow the neural modules to focus only on representing the structure. For example, if the

context was not passed into the higher-level encoder and instead only to the NLU module, then the NLU

may no longer be able to sufficiently model the belief state and may instead have to more explicitly model

the context (e.g., as a bag-of-words representation).

Several variations of training SFNs are considered during experimentation, enumerated as follows. (1)

The pre-trained neural modules are kept frozen, as a way of ensuring that the structure is not deteriorated. (2)

The pre-trained neural modules are fine-tuned for the end-to-end task of response generation. This ensures

that the model is able to abandon or modify certain elements of the structure if it helps with the end-to-end

task. (3) The pre-trained modules are multi-tasked with the end-to-end task of response generation. This

ensures that the structure is maintained and potentially strengthened while also allowing the modules to

update and improve for the end-to-end task.

Reinforcement Learning with SFNs

A motivation for incorporating explicit structure into neural models is that it may reduce the effects of

the implicit language model, and therefore mitigate degenerate output after reinforcement learning. This
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Model BLEU Inform Success Combined Score
Supervised Learning

Seq2Seq [Budzianowski et al., 2018] 18.80 71.29% 60.29% 84.59
Seq2Seq w/ Attn [Budzianowski et al., 2018] 18.90 71.33% 60.96% 85.05
Seq2Seq (Ours) 20.78 61.40% 54.50% 78.73
Seq2Seq w/ Attn (ours) 20.36 66.50% 59.50% 83.36
3-layer HDSA [Chen et al., 2019b] 23.60 82.90% 68.90% 99.50
Naïve Fusion (Zero-Shot) 7.55 70.30% 36.10% 60.75
Naïve Fusion (Fine-tuned Modules) 16.39 66.50% 59.50% 83.36
Multitasking 17.51 71.50% 57.30% 81.91
Structured Fusion (Frozen Modules) 17.53 65.80% 51.30% 76.08
Structured Fusion (Fine-tuned Modules) 18.51 77.30% 64.30% 89.31
Structured Fusion (Multitasked Modules) 16.70 80.40% 63.60% 88.71

Reinforcement Learning
Seq2Seq + RL [Zhao et al., 2019] 1.40 80.50% 79.07% 81.19
LiteAttnCat + RL [Zhao et al., 2019] 12.80 82.78% 79.20% 93.79
Structured Fusion (Frozen Modules) + RL 16.34 82.70% 72.10% 93.74

Table 4.1: Experimental results for the various models. This table compares two classes of methods: those
trained with supervised learning and those trained with reinforcement learning. All bold-face results are
statistically significant (p < 0.01).

hypothesis is evaluated by fine-tuning the SFNs with reinforcement learning. The setup for this experiment

is similar to that of Zhao et al. [2019]: (1) the model produces a response conditioned on a ground-truth

dialog context, (2) the success rate is evaluated for the generated response, (3) using the success rate as the

reward, the policy gradient is calculated at each word, and (4) the parameters of the model are updated. A

learning rate of 1e-5 is used with the Adam optimizer [Kingma and Ba, 2015].

Reinforcement learning is used to fine-tune the best performing model trained in a supervised learning

setting. During this fine-tuning, the neural dialog modules (i.e., the NLU, DM and NLG) are frozen. Only

the high-level model is updated during reinforcement learning. Freezing maintains the structure, while

still updating the higher level components. Since the structure is maintained, it is unnecessary to alternate

between supervised and reinforcement learning.

4.2.2 Experiments

Dataset

The dialog systems are evaluated on the MultiWOZ corpus [Budzianowski et al., 2018], which consists

of ten thousand human-human conversations covering several domains. The MultiWOZ corpus contains

conversations between a tourist and a clerk at an information center which fall into one of seven domains

- attraction, hospital, police, hotel, restaurant, taxi, train. Individual conversations span one to five of the

domains. Dialogs were collected using the Wizard-of-Oz framework, where one participant plays the role
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of an automated system.

Each dialog consists of a goal and multiple user and system utterances. Each turn is annotated with two

binary vectors: a belief state vector and a dialog act vector. A single turn may have multiple positive values

in both the belief state and dialog act vectors. The belief state and dialog act vectors are of dimensions 94

and 593, respectively.

Several metrics are used to evaluate the models. BLEU [Papineni et al., 2002] is used to compute the

word overlap between the generated output and the reference response. Two task-specific metrics, defined

by Budzianowski et al. [2018], Inform rate and Success rate, are also used. Inform rate measures how often

the system has provided the appropriate entities to the user. Success rate measures how often the system

answers all the requested attributes. Similarly to Budzianowski et al. [2018], the best model is selected

during validation using the combined score which is defined as BLEU +0.5× (Inform+Success). This

combined score is also reported as an evaluation metric.

Experimental Setup

The hyperparameters match those used by Budzianowski et al. [2018]: embedding dimension of 50, hidden

dimension of 150, and a single-layer LSTM. All models are trained for 20 epochs using the Adam optimizer

Kingma and Ba [2014], with a learning rate of 0.005 and batch size of 64. The norm of the gradients are

clipped to 5 Pascanu et al. [2012]. Greedy decoding is used during inference.

All previous work uses the ground-truth belief state vector during training and evaluation. Therefore the

experiments with the SFNs have the NLU module replaced by an "oracle NLU" which always outputs the

ground-truth belief state.

Results

Experimental results in Table 4.1 show that Structured Fusion Networks (SFNs) obtain strong results when

compared to both methods trained with and without the use of reinforcement learning. Compared to previ-

ous methods trained only with supervised learning, SFNs obtain a +4.26 point improvement over seq2seq

baselines in the combined score with strong improvement in both Success and Inform rates. SFNs are

outperformed by the HDSA [Chen et al., 2019b] model which relies on BERT [Devlin et al., 2018] and

conditioning on graph structured dialog acts. When using reinforcement learning, SFNs match the perfor-

mance of LiteAttnCat [Zhao et al., 2019] on the combined score. Though the Inform rate is equivalent and

the Success rate is lower (albeit still better than all supervised methods), the BLEU score of SFNs is much

better with an improvement of +3.54 BLEU over LiteAttnCat.

In the reinforcement learning setting, the improved BLEU can be attributed to the explicit structure of

the model. This structure enables the model to optimize for the reward (Success rate) without resulting in

degenerate output [Lewis et al., 2017].

SFNs obtain the highest combined score when the modules are fine-tuned. This is likely because, while

the structured modules serve as a strong initialization for the task of dialog generation, forcing the model to
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maintain the exact structure (i.e., frozen modules) limits its ability to learn. In fact, the end-to-end model

may choose to ignore some elements of intermediate structure (e.g., a particular dialog act) which prove

useless for the task of response generation.

Despite strong overall performance, SFNs do show a -2.27 BLEU drop when compared to the strongest

seq2seq baseline and a -5.09 BLEU drop compared to HDSA. Though it is difficult to ascertain the root

cause of this drop, one potential reason could be that the dataset contains many social niceties and generic

statements (e.g., "happy anniversary") which are difficult for a structured model to effectively generate

(since it is not an element of the structure) while a free-form sequence-to-sequence network would not have

this issue.

To a lesser degree, multi-tasking (i.e., multitasked modules) would also prevent the model from being

able to ignore some elements of the structure. However, the SFN with multitasked modules performs best

on the Inform metric with a +9.07% improvement over the seq2seq baselines and a +3.10% over other

SFN-based methods. This may be because the Inform metric measures how many of the requested attributes

were answered, which benefits from a structured representation of the input.

Zero-Shot Naïve Fusion performs very poorly, suggesting that the individual components have difficulty

producing good results when given imperfect input. Though the NLG module performs extremely well when

given the oracle dialog acts (28.97 BLEU; 106.02 combined), its performance deteriorates significantly

when given the predicted dialog acts. This observation is also applicable to Structured Fusion with frozen

modules.

HDSA [Chen et al., 2019b] outperforms SFN possibly due to the use of a more sophisticated Transformer

model [Vaswani et al., 2017] and BERT pre-training [Devlin et al., 2018]. A unique advantage of SFNs is

that the architecture of the neural dialog modules is flexible. The performance of HDSA could potentially

be integrated with SFNs by using the HDSA model as the NLG module of an SFN.

These strong performance gains reaffirm the hypothesis that adding explicit structure to neural dialog

systems results in improved modelling ability particularly with respect to dialog policy as seen in the increase

in Inform and in Success. The results with reinforcement learning suggest that the explicit structure allows

controlled fine-tuning of the models, which prevents divergent behavior and degenerate output.

Human Evaluation

To supplement the results in Table 4.1, human evaluation was used to compare seq2seq, SFN, SFN fine-

tuned with reinforcement learning, and the ground-truth human response. Workers on Amazon Mechanical

Turk (AMT) were asked to read the context, and score the appropriateness of each response on a five-point

scale (1-5). One hundred context-response pairs were labeled by three workers each. The results shown in

Table 4.2 demonstrate that SFNs with RL outperform the other methods in terms of human judgment. These

results indicate that in addition to improving on automated metrics, SFNs result in user-favored responses.
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Model Avg Rating ≥ 4 ≥ 5
Seq2Seq 3.00 40.21% 9.61%

SFN 3.02 44.84% 11.03%
SFN + RL 3.12 44.84% 16.01%

Human 3.76 59.79% 34.88%

Table 4.2: Results of human evaluation experiments. The ≥ 4 and ≥ 5 columns indicate the percentage of
system outputs which obtained a greater than 4 and 5 rating, respectively.

4.2.3 Analysis

Limited Data

Structured Fusion Networks (SFNs) should outperform sequence-to-sequence (seq2seq) networks in re-

duced data scenarios due to the explicit structure. While a baseline method would require large amounts of

data to learn to infer structure, SFNs do this explicitly.

The performance of seq2seq and SFNs are determined, when training on 1%, 5%, 10% and 25% of the

training data (total size of ∼ 55,000 utterances). The supervised-learning variant of SFNs with fine-tuned

modules is used. The pre-training of the modules and fine-tuning of the full model is done on the same data

split. The full data is used during validation and testing.

The results in Figure 4.6 show the Inform and Success rates for different amounts of training data. SFNs

significantly outperform the seq2seq model in low-data scenarios. Notably, improvement is considerably

higher in the most extreme low-data scenario, when only 1% of the training data (∼ 550 dialogs) is used.

As the amount of training data increases, the gap between the two models stabilizes. The effectiveness at

extreme low-data scenarios reaffirms the hypothesis that explicit structure makes SFNs less data-hungry

than sequence-to-sequence networks.

Domain Generalizability

The explicit structure of SFNs should facilitate effective domain generalization. A domain transfer exper-

iment was constructed to evaluate the comparative ability of seq2seq and SFNs to generalize to unseen

inputs. The models were both trained on a reduced dataset that largely consists of out-of-domain exam-

ples and evaluated on in-domain examples. Specifically, 2000 out-of-domain training examples and only 50

in-domain training examples were used. The restaurant domain of MultiWOZ was selected as in-domain.

Model BLEU Inform Success
Seq2Seq 10.22 35.65% 1.30%

SFN 7.44 47.17% 2.17%

Table 4.3: Results of the domain transfer experiment comparing sequence-to-sequence and Structured Fu-
sion Networks. All bold-face results are statistically significant (p < 0.01).

The results, seen on Table 4.3, show that SFNs perform significantly better on both the Inform (+11.52%)
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(a)

(b)

Figure 4.6: Variation of Inform (a) and Success (b) rate at different amounts of training data.
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and Success rate. Although SFNs have a slightly higher Success rate, both models perform poorly. This is

expected since the models would be unable to answer all the requested attributes when they have seen little

domain data – their language model would not be tuned to the in-domain task. The -2.78 BLEU reduction

roughly matches the BLEU difference observed on the main task, therefore it is not an issue specific to

domain transfer.

4.2.4 Discussion

This work studies several methods of incorporating explicit structure into end-to-end neural models of di-

alog. The structure of pipeline dialog systems is incorporated into the model architecture of neural dialog

systems, as an inductive bias. This inductive bias prescribes a specific process by which Structured Fu-

sion Networks should produce an output from a given input. Structured Fusion Networks, comprised of

pre-trained dialog modules and a higher-level end-to-end network, are shown to obtain strong results on the

MultiWOZ dataset both with and without the use of reinforcement learning. SFNs are further shown to be

robust to divergence during reinforcement learning, effective in few-shot settings and exhibit improvements

on domain generalization.

4.3 Example-Driven Intent Prediction

Given the vast space of potential domains in task-oriented dialog, a key challenge of dialog systems research

is to effectively and efficiently adapt to new domains [Rastogi et al., 2019]. Rather than adapting to new

domains by relying on large amounts of domain-specific data, a scalable paradigm for adaptation necessitates

the development of generalizable models that perform well in few-shot settings [Casanueva et al., 2020;

Mehri et al., 2020a]. This work incorporates inductive biases into the model architecture in order to facilitate

generalization to new inputs and new outputs, specifically for the task of intent prediction.

A universal goal of language encoders is that inputs with similar semantic meanings have similar latent

representations [Devlin et al., 2018]. To maintain consistency with this goal, this work explores example-
driven training wherein an utterance is classified by measuring similarity to a set of examples correspond-

ing to each intent class. While standard approaches implicitly capture the latent space to intent class mapping

in the learned weights (i.e., through a classification layer), example-driven training makes the prediction step

an explicit non-parametric process that reasons over a set of examples. By maintaining consistency with the

universal goal of language encoders and explicitly reasoning over the examples, example-driven training

demonstrates improved generalizability to unseen intents and domains. Example-driven training is an in-

ductive bias in the model architecture, that is motivated by knowledge of the desired generalization. By

comparing to a set of examples in a non-parametric manner, it is possible to generalize to new outputs (i.e.,

new intents) without any additional training.

By leveraging example-driven training, in combination with CONVBERT (described in Section 3.1) and

observers (described in detail in Mehri et al. [2020b]), this work attains state-of-the-art results on three intent
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prediction datasets: BANKING77 [Casanueva et al., 2020], CLINC150 [Larson et al., 2019], and HWU64 [Liu

et al., 2019a] in both full data and few-shot settings. To measure the generalizability of the proposed models,

experiments are carried out evaluating the ability of the proposed models to transfer to new intents and across

datasets. By simply modifying the set of examples during evaluation and without any additional training,

the example-driven approach attains strong results on both transfer to unseen intents and across datasets –

thereby demonstrating generalization to new inputs and to new outputs.

4.3.1 Methods

Baselines

Several baseline models are leveraged for the task of intent prediction. The simplest baseline is an off-the-

shelf BERT-base model [Devlin et al., 2018], fine-tuned for the task of intent prediction. Next, a CON-

VBERT model with task-adaptive self-supervised training (as described in Section 3.1) is fine-tuned. The

final baseline model is a CONVBERT model that leverages observers [Mehri et al., 2020b]. Observers

improve the representational power of BERT-like models by mitigating the negative effects of the [CLS]

token. Observers were motivated by an analysis of BERT’s attention [Clark et al., 2019; Kovaleva et al.,

2019] and are shown to better capture the semantic information of the input utterance [Mehri et al., 2020b].

The superior representations produced by observers are particularly conductive for example-driven training,

which relies on meaningful representations to measure the similarity between utterances.

Example-Driven Training

A universal goal of language encoders is that inputs with similar semantic meanings should have similar

latent representations. BERT [Devlin et al., 2018] has been shown to effectively identify similar sentences

[Reimers and Gurevych, 2019], even without additional fine-tuning [Zhang et al., 2019b]. Example-driven

training aims to reformulate the task of intent prediction to be more consistent with this universal goal of

language encoders.

A BERT-like encoder is used to train an intent classification model to (1) measure the similarity of an

utterance to a set of examples and (2) infer the intent of the utterance based on the similarity to the examples

corresponding to each intent. Rather than implicitly capturing the latent space to intent class mapping

in the learned weights (i.e., through a classification layer), this approach makes the mapping an explicit

non-parametric process that reasons over a set of examples. Our formulation, similar to metric-based meta

learning [Koch et al., 2015], only performs gradient updates for the language encoder, which is trained

for the task of sentence similarity. This example-formulation, serves as an inductive bias that prescribes a

specific process for intent prediction. It is hypothesized that the resulting model will better generalize in

few-shot scenarios, as well as to rare intents.

The set of variables used to define the model architecture are: (1) a language encoder F that encodes an

utterance to produce a latent representation, (2) a natural language utterance utt, and (3) a set of n examples
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Figure 4.7: A visualization of the three step process of computing a probability distribution over the set of
intents in the example-driven formulation.
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{(x1, y1), . . . , (xn, yn)} where x1,...,n are utterances and y1,...,n are their corresponding intent labels. With

F being a BERT-like model, the following equations describe example-driven intent classification:

u = F(utt) (4.11)

Xi = F(xi) (4.12)

α = softmax(tinkyuT ·X) (4.13)

P (c) =
∑

i: yi=c

αi (4.14)

These equations describe a non-parametric process for intent prediction. Instead, through the example-

driven formulation (visualized in Figure 4.7), the underlying language encoder (e.g., BERT) is being trained

for the task of sentence similarity. A universal goal of language encoders is that inputs with similar semantic

meaning should have similar latent representations. By formulating intent prediction as a sentence similarity

task, this approach is adapting BERT-based encoders in a way that is consistent with this universal goal. In

contrast to the baseline models, this formulation facilitates generalizability and has the potential to better

transfer to new intents and domains.

At training time, the set of examples is populated in a two step process: (i) for each intent class that exists

in the training batch, a different utterance of the same intent class is sampled from the training set and (ii)

utterances are randomly sampled from the training set until the set of examples is double the size of the

training batch size (128 example utterances). During inference, the example set includes all the utterances

in the training data.

4.3.2 Experiments

Datasets

The aforementioned models are evaluated on three intent prediction datasets: BANKING77 [Casanueva et al.,

2020], CLINC150 [Larson et al., 2019], and HWU64 [Liu et al., 2019a]. These datasets span several domains

and consist of many different intents, making them more challenging and more reflective of commercial

settings than commonly used intent prediction datasets like SNIPs [Coucke et al., 2018]. BANKING77

contains 13,083 utterances related to banking with 77 different fine-grained intents. CLINC150 contains

23,700 utterances spanning 10 domains (e.g., travel, kitchen/dining, utility, small talk, etc.) and 150 different

intent classes. HWU64 includes 25,716 utterances for 64 intents spanning 21 domains (e.g., alarm, music,

IoT, news, etc.).

Casanueva et al. [2020] forego a validation set for these datasets and instead only use a training and

testing set. In contrast, these experiments follow the setup of Mehri et al. [2020a] (i.e., the set up in Section

3.1), wherein a portion of the training set is designated as the validation set.
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Experimental Setup

Evaluation is carried out in two experimental settings following prior work [Casanueva et al., 2020; Mehri

et al., 2020a]: (1) using the full training set and (2) using 10 examples per intent or approximately 10% of

the training data. In both settings, the models are evaluated on the validation set at the end of each epoch

and early stopping is performed with a patience of 20 epochs for a maximum of 100 epochs. Since the

few-shot experiments are more sensitive to initialization and hyperparameters, the experiments are repeated

5 times and the final result is the average over the experimental runs. For the few-shot settings, the models

use only the few-shot training data for both masked language modelling and as examples at inference time

in the example-driven models (i.e., they do not see any additional data).

Results

The experimental results, as well as the results presented by Casanueva et al. [2020] and Mehri et al. [2020a]

are shown in Table 4.4. In combination with observers, example-driven training results in (1) SoTA results

across the three datasets and (2) a significant improvement over the BERT-base model, especially in the

few-shot setting (+5.02% on average).

Furthermore, the results show that the use of observers is particularly conducive to the example-driven

training setup. Combining these two approaches gains strong improvements over the ConvBERT + MLM

model (few-shot: +4.98%, full data: +0.41%). However, when considered independently, there is no

consistent improvement for both example-driven (few-shot: -0.46% full data: +0.24%) and observers (few-

shot: +0%, full data: -0.42%). The fact that these two methods are particularly conductive to each other

signifies the importance of using them jointly. The representation step of intent prediction is tackled by

observers, which aim to better capture the semantics of an input by disentangling the attention and there-

fore avoiding the dilution of the representations. The prediction step, is improved through example-driven

training which uses the underlying BERT-based model to predict intents by explicitly reasoning over a set

of examples. This characterization highlights the importance of jointly addressing both steps of the pro-

cess simultaneously. Using observers alone does not lead to significant improvements because the linear

classification layer cannot effectively leverage the improved representations. Using example-driven training

alone does not lead to significant improvements because the [CLS] representations do not capture enough

of the underlying utterance semantics. The enhanced semantic representation of observers is necessary

for example-driven training: by improving the latent representations of utterances, it is easier to measure

similarity in the set of examples.

Transfer to Unseen Intents

By formulating intent prediction as a sentence similarity task, the example-driven formulation allows for

the potential to predict intents that are unseen at training time. Experiments are carried out in the few-shot

setting for each dataset, by (1) randomly removing 4 - 10 intent classes when training in an example-driven

manner, (2) adding the removed intents back to the set of examples during evaluation and (3) reporting
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BANKING77 CLINC150 HWU64

Model Few Full Few Full Few Full

Prior Work

USE* [Casanueva et al., 2020] 84.23 92.81 90.85 95.06 83.75 91.25
CONVERT* [Casanueva et al., 2020] 83.32 93.01 92.62 97.16 82.65 91.24
USE+CONVERT* [Casanueva et al., 2020] 85.19 93.36 93.26 97.16 85.83 92.62
BERT-BASE [Mehri et al., 2020a] 79.87 93.02 89.52 95.93 81.69 89.97
CONVBERT [Mehri et al., 2020a] 83.63 92.95 92.10 97.07 83.77 90.43
CONVBERT + MLM [Mehri et al., 2020a] 83.99 93.44 92.75 97.11 84.52 92.38

Proposed Models

CONVBERT + MLM + Example 84.09 94.06 92.35 97.11 83.44 92.47
CONVBERT + MLM + Observers 83.73 92.83 92.47 96.76 85.06 92.10
CONVBERT + MLM + Example + Observers 85.95 93.83 93.97 97.31 86.28 93.03

Table 4.4: Accuracy scores (×100%) on all three intent detection data sets with varying number of training
examples (Few: 10 training utterances per intent; Full: full training data). The full data results of Casanueva
et al. [2020] are trained on more data as they forego a validation set. These experiments follow the setup of
Mehri et al. [2020a], wherein a portion of the training set is used as the validation set. Results in bold-face
are statistically significant by t-test (p < 0.01).

Model BANKING77 CLINC150 HWU64

BERT-BASE (OFF-THE-SHELF) 19.50 26.50 26.56
CONVBERT (OFF-THE-SHELF) 19.50 26.50 26.56
CONVBERT + MLM + Example 67.36 79.69 62.24
CONVBERT + MLM + Example + Observers 84.87 94.35 85.32

BEST FULLY TRAINED MODEL 85.95 93.97 86.28

Table 4.5: Accuracy scores (×100%) for transferring to unseen intents averaged over 30 runs wherein 4-10
intents are removed from the few-shot setting during training and added back in during evaluation. The last
row corresponds to the best results that were trained with all of the intents, shown in Table 4.4. Note that
the non example-driven models are incapable of predicting unseen slots, and their perform is equivalent to
random chance.

results only on the unseen intents. This process is repeated 30 times for each dataset and the results are

reported in Table 4.5. It should be noted that task-adaptive self-supervised training is not performed on the

utterances corresponding to the unseen intents.

These results demonstrate that the example-driven formulation generalizes to new intents, without hav-

ing to re-train the model. The performance on the unseen intents approximately matches the performance
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Model BANKING77 CLINC150 HWU64

TRAINED ON BANKING77 93.83 91.26 83.64
TRAINED ON CLINC150 85.84 97.31 86.25
TRAINED ON HWU64 77.95 92.47 93.03

Table 4.6: Accuracy scores (×100%) for transferring across datasets (in the full data setting) using the
ConvBERT + MLM + Example + Observers model. The diagonal consists of results where the model was
trained and evaluated on the same dataset.

Model BANKING77 CLINC150 HWU64

CONVBERT + MLM + Example 34.22 31.92 19.73
CONVBERT + MLM + Example + Observers 35.34 33.84 21.19

Table 4.7: Micro-averaged F-1 scores for the task of reproducing the words of the input (using only the
most frequent 1000 words) given the different latent representations.

of the best model which has seen all intents (denoted BEST FULLY TRAINED MODEL in Table 4.5). These

results highlight a valuable property of the proposed formulation: namely, that new intent classes can be

added in an online manner without having to re-train the model. While the off-the-shelf BERT-base and

CONVBERT models, which are not at all fine-tuned on the datasets, are able to identify similar sentences

to some extent – training in an example-driven manner drastically improves performance.

The addition of observers, in combination with example-driven training, significantly improves perfor-

mance on this experimental setting (+18.42%). This suggests that the observers generalize better to unseen

intents, potentially because the observers are better able to emphasize words that are key to differentiating

between intents (e.g., turn the volume up vs turn the volume down).

Transfer Across Datasets

While transferring to unseen intents is a valuable property, the unseen intents in this experimental setting are

still from the same domain. To further evaluate the generalizability of our models, experiments are carried

out evaluating the ability of models to transfer to other datasets. Using the full data setting with 10 training

utterances per intent: (1) a model is trained on a dataset and (2) the trained models are evaluated on a new

dataset, using the training set of the new dataset as examples during inference. This evaluates the ability of

the models to transfer to unseen intents and domains without additional training.

The results in Table 4.6 demonstrate the ability of the the model with obsevers and example-driven

training to transfer to new datasets, which consist of both unseen intents and unseen domains. These results

show that the example-driven model performs reasonably well even when transferring to domains and intents

that were not seen at training time. These results, in combination with the results shown in Table 4.5 speak

to the generalizability that is induced through example-driven training. Specifically, by formulating intent

64



prediction as a sentence similarity task through example-driven training, the models maintain consistency

with a universal goal of language encoders (i.e., that utterances with similar semantic meanings have similar

latent representations) that effectively transfers to new settings.

4.3.3 Discussion

Example-driven training incorporates an inductive bias into the model architecture. In doing so, the process

by which the data-driven model goes from utterance to intent is prescribed. The prescribed process is

motivated, in particular, by knowledge of the desired generalization. In order to facilitate transfer to unseen

intents, example-driven training reformulates intent prediction to be an entirely non-parametric process. The

design of this non-parametric process (i.e., comparing to examples) serves as an inductive bias that facilitates

generalization to new outputs.

Furthermore, example-driven training maintains consistency with a universal goal of language encoders:

i.e., that similar sentences have similar representations. By maintaining consistency with this universal goal,

as well as relying on large-scale pre-trained language models, the resulting model is able to generalize to new

inputs and domains very efficiently. This is particularly demonstrated by the result of the dataset transfer

experiments, wherein the models are shown to be effective in entirely new domains.

4.4 Conclusion

This chapter demonstrates that inductive biases in the model architecture can force a data-driven model

to learn specific high-level abstractions, which are conductive to generalization. The first body of work

introduced in this chapter is Structured Fusion Networks, which prescribe a specific procedure by which a

model must perform the task of response generation. Through this inductive bias in the model architecture,

SFNs are shown to perform better in low-resource settings and in few-shot domain adaptation. The second

study introduces example-driven training, which makes the representation to output mapping an explicit

non-parametric process and thereby facilitates generalization both to new inputs and to new outputs. Like

SFNs, the work in example-driven training prescribes a specific procedure by which the model must infer the

output, which is shown to be conductive to generalization. Through these two studies, this chapter validates

the use inductive biases in the model architecture as a means of enforcing certain abstractions and behaviors

and thereby facilitate the desired generalizations.
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Chapter 5

Inductive Bias in the Problem Formulation

5.1 Introduction

The formulation of a problem strongly influences the abstractions learned by the resulting data-driven model.

As described in the previous chapter, inductive biases in the model architecture are motivated by knowledge

of the problem and the desired generalizations. Similarly, inductive biases in the problem formulation are

motivated by knowledge of the model’s capabilities and the desired generalizations. Understanding and

effectively leveraging the properties and capabilities of the model is particularly imperative when working

with large-scale pre-trained models. Such models have various capabilities that can be leveraged to facil-

itate generalization. Particularly for zero-shot generalization, it is important to achieve a strong alignment

between the pre-existing capabilities of a pre-trained model and the requirements of a downstream problem.

This chapter studies mechanisms of incorporating inductive biases into the problem formulation, in

order to effectively leverage the capabilities of pre-trained language models and consequently induce gener-

alization. By modifying the data representation, training algorithm and inference algorithm – the resulting

models are prescribed a specific process by which they must predict the output. The focus of this chapter

is to incorporate inductive biases that prescribe a process which is well-aligned with the pre-existing capa-

bilities of the model. For example, if a pre-trained model was trained with a ranking objective, it would

likely be more effective to reformulate a classification/generation problem as a ranking problem. Likewise,

large-scale pre-trained models (e.g., DialoGPT [Zhang et al., 2019c]) may have learned certain skills in the

process of learning to produce human-level responses. These skills may include implicit notions of dialog

quality and slot filling. As such, by reformulating downstream problems, it may be possible to leverage

these implicitly learned skills in order to induce zero-shot and few-shot generalization.

In Section 5.2 the problem of dialog evaluation is reformulated to leverage the superior response gener-

ation capabilities of DialoGPT [Zhang et al., 2019c]. This reformulation is motivated by the hypothesis that

DialoGPT, in the process of learning to produce human-level responses, has learned to capture an implicit

notion of dialog quality. The FED metric uses DialoGPT to calculate the likelihood of various follow-up

utterances in order to evaluate eighteen different qualities of dialog (e.g., relevant, fluent, topic depth, en-
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gaging, etc.) in a zero-shot manner. By incorporating this inductive bias in the problem formulation, the

FED metric is shown to exhibit zero-shot generalization to new outputs (i.e., qualities). In Section 5.3, the

problem of slot-filling is reformulated to, again, leverage the capabilities of DialoGPT. GenSF reformulates

the problem of slot-filling as a response completion task, wherein DialoGPT is tasked with completing par-

tial responses (e.g., "Ok the slot_name is"). In combination with constrained decoding strategies, GenSF

is shown to strongly outperform prior work in few-shot and zero-shot settings, thereby demonstrating gen-

eralization to new inputs and new outputs (i.e., slots).

5.2 Reformulating Dialog Evaluation

The problem of dialog evaluation is challenging for several reasons: (1) The one-to-many nature of dialog

[Zhao et al., 2017b] makes word-overlap metrics ineffective for scoring valid responses that deviate from

the ground-truth [Liu et al., 2016; Gupta et al., 2019]. (2) Dialog quality is inherently multi-faceted [Walker

et al., 1997; See et al., 2019] and an interpretable metric should measure several qualities (e.g., interesting,

relevant, fluent). (3) Dialog systems have begun to be evaluated in an interactive setting [Ram et al., 2018;

Adiwardana et al., 2020] wherein a real user has a back-and-forth conversation with a system. Interactive

evaluation is not constrained to a static corpus and better captures the performance of a system in a realistic

setting. Measuring multiple distinct qualities of dialog, without a reference response and in an interactive

setting, in the absence of annotated training data is a problem of generalization. This work introduces the

FED metric (fine-grained evaluation of dialog) which assesses eighteen qualities of dialog without relying

on a reference response and in a zero-shot manner.

In order to facilitate zero-shot generalization to multiple different outputs (i.e., dialog qualities), the

problem of dialog evaluation is reformulated to better align with the capabilities of pre-trained language

models. Through large-scale self-supervised pre-training, DialoGPT [Zhang et al., 2019c] is able to generate

practically human-level responses. Kocijan et al. [2019] assert that pre-trained models implicitly capture

world knowledge and can therefore perform common-sense reasoning. Similarly, this work hypothesizes

that DialoGPT has implicitly captured some notion of dialog quality and can therefore be used for dialog

evaluation. By understanding the capabilities of the pre-trained DialoGPT (i.e., superior response generation

and implicit notion of dialog quality), the problem of dialog evaluation can be reformulated to leverage

these capabilities and achieve the desired zero-shot generalization. The problem reformulation serves as an

inductive bias that is motivated by knowledge of the capabilities of the pre-trained model.

Eskenazi et al. [2019] assess the quality of a system utterance in an interactive setting by looking at

the following user response. The FED metric is based on the same intuition. Given a system response, its

quality is measured by computing the likelihood that DialoGPT will respond to it with a particular follow-

up utterance (e.g., “That is really interesting!”). DialoGPT is more likely to respond in this way to what

it believes is an interesting system response. A set of follow-up utterances is constructed for each of the

eighteen qualities and the likelihoods of these follow-up utterances are used to measure dialog quality. The

FED metric is shown to obtain moderate to strong correlation with human judgement for turn-level and
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dialog-level evaluation without any training data or ground-truth response.

5.2.1 Methods

The FED (fine-grained evaluation of dialog) metric is an automatic evaluation metric for dialog which (1)

does not need to compare to a reference response, (2) measures eighteen fine-grained qualities of dialog,

and (3) does not use training data. Capturing a diverse set of fine-grained qualities without supervision

is an especially challenging problem. To achieve zero-shot generalization to various dialog qualities, the

FED metric reformulates the problem of dialog evaluation to achieve better alignment with the capabilities

of pre-trained language models. The reformulation of dialog evaluation is motivated by two areas of prior

work: (1) pre-trained language models and their capabilities and (2) the use of follow-up utterances as a

mechanism for evaluation.

DialoGPT

Zhang et al. [2019c] extend GPT-2 [Radford et al., 2018] to train DialoGPT on 147M conversation-like

interactions from Reddit. DialoGPT is shown to outperform humans at producing relevant, interesting and

human-like responses.

Kocijan et al. [2019] show that pre-trained language models, specifically BERT [Devlin et al., 2018], im-

plicitly capture world knowledge and can therefore perform common sense reasoning. By calculating which

answer results in a more probable sentence according to BERT, they strongly outperform other methods on

the Winograd Schema Challenge [Levesque et al., 2012].

Just as BERT has been shown to capture world knowledge, this work hypothesizes that DialoGPT has

implicitly captured some notion of dialog quality. The qualities of a particular dialog context (e.g., interest-

ing, relevant, informative) likely inform DialoGPT’s response and, as such, must be captured by the model.

If there was training data for the eighteen dialog qualities, this hypothesis could be verified by fine-tuning

DialoGPT for the task of dialog evaluation. Without training data, however, the challenge is to devise an

unsupervised mechanism for extracting the quality information implicitly captured by DialoGPT.

Follow-Up Utterance for Evaluation

Eskenazi et al. [2019] assess the quality of a system utterance in an interactive setting, by looking at the

following user response. When users speak to a system, their response to a given system utterance may

implicitly or explicitly provide feedback for the system. For example, if a user follows up a system utterance

with “That’s not very interesting”, they are providing information about the quality of the system utterance.

The conversations in the FED dataset were collected in an interactive setting. Thus the use of the follow-

up utterance is a valid option. However, even if users consistently provided feedback, it would be difficult

to interpret the feedback without training data.
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FED Metric

The proposed FED metric is motivated by (1) the intuition that DialoGPT has implicitly learned to reveal

dialog quality and (2) that the follow-up utterance can provide valuable information about a system response.

By leveraging an understanding of the capabilities of the pre-trained model, the problem of dialog evaluation

can be reformulated to achieve the desired zero-shot generalizations. To measure the quality of a system

response s, FED computes the likelihood of the model generating various follow-up utterances (e.g., “Wow!

Very interesting.”) in response to s. DialoGPT will be more likely to respond with a positive follow-up

utterance if given a better (e.g., more interesting/relevant/fluent) preceding system utterance.

For each of the eighteen fine-grained dialog qualities, a set of positive follow-up utterances, p, and a set

of negative follow-up utterances, n, is constructed. Specifically, given a dialog context c, a system response

r and a function D that computes the log-likelihood of DialoGPT generating a particular response, the

predicted score for a dialog quality is calculated as:

|p|∑
i=1

D(c+ r, pi)−
|n|∑
i=1

D(c+ r, ni) (5.1)

This equation can be modified to predict scores for dialog-level qualities, by simply removing the system

response r from the equation.

A response is said to be interesting if it is more likely that DialoGPT (acting as the user) responds with

a positive follow-up utterance (e.g., “Wow! Very interesting”) than with a negative one (e.g., “That’s really

boring”). For each of the eighteen qualities, several positive and negative utterances were hand-written1 and

minimally tuned on a small subset of the dataset (10 conversations).

Generally, negative follow-up utterances are more meaningful than positive ones. For example, if a

system response is irrelevant, a follow-up utterance of “That’s not relevant” is reasonable. However, ac-

knowledging the relevance of a system response is less likely. Therefore the log-likelihood produced by

DialoGPT will be noisier and less informative. The number of positive utterances for each dialog quality

ranges between 0 and 4, and the number of negative utterances ranges between 1 and 4. The overall im-

pression scores are calculated by taking an average of the scores for either the turn-level or dialog-level

qualities.

5.2.2 Experiments

Experiments are carried out to measure the correlation of the FED metric with human judgments. At the

time these experiments were carried out, there were no evaluation metrics that could (1) operate without a

reference response and (2) effectively assess interactive dialog (i.e., not grounded in a specific corpus). As

such, the experiments described in this section do not compare to other metrics. Since then, Yeh et al. [2021]

has performed a more exhaustive comparison between FED and more recent metrics.

1The hand-written follow-up utterances can be found at https://github.com/shikib/fed.
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Dataset

The FED corpus, described in detail in Mehri and Eskenazi [2020a], consists of a total of 124 conversations

(40 Meena, 44 Mitsuku, 40 Human) each annotated by five different workers. Each conversation had one

dialog-level annotation and three turn-level annotations for chosen system responses that were randomly

sampled from the conversation. There were 9 questions for turn-level annotation and 11 for dialog-level

annotation. In total, the FED dataset includes 3348 turn-level and 1364 dialog-level data points, for a total

of 4712. This dataset intended to be used solely for the evaluation of metrics, as the number of annotated

conversations is not large enough to accommodate both training and testing.

Since dialog quality is inherently multi-faceted it is important to measure several different qualities of

dialog. The FED corpus consists of eighteen fine-grained dialog qualities: eight at the turn level and ten at

the dialog level. The full set of qualities are described in Mehri and Eskenazi [2020a].

Experimental Setup

The FED metric was evaluated using four variations of the pre-trained DialoGPT model. The pre-trained

DialoGPT models can be either medium size: 345M or large: 762M. They are either fine-tuned from GPT-2

[Radford et al., 2018] or trained from scratch. The follow-up utterances were handwritten and minimally

tuned on 10 conversations using the 762M fine-tuned model. The small (117M) DialoGPT model was not

used since Zhang et al. [2019c] demonstrated its poor performance.

Most of the turn-level qualities were scored using only the last system response as context. For relevant,

correct and dialog-level metrics, the entire conversation was used as context.

Correlation with Human Judgement

The Spearman correlation was measured between the predicted quality scores and the mean of the annotated

scores. Correlations for all the dialog qualities, and all four variations of the underlying DialoGPT model

are shown in Table 5.1. The best overall turn-level correlation is 0.209 and the best overall dialog-level

correlation is 0.443. Despite being entirely zero-shot and not relying on a reference response, FED achieves

correlations which are competitive with prior work on dialog evaluation. Multi-reference evaluation for dia-

log achieves correlations in the 0.10 - 0.27 range [Gupta et al., 2019] and ADEM demonstrates correlations

in the 0.28 - 0.42 range [Lowe et al., 2017].

The FED metric works better for some dialog qualities than others. This is because DialoGPT was

trained on Reddit and is therefore more likely that it has captured certain dialog qualities that Reddit exhibits.

For example, it is more likely that DialoGPT learns to measure qualities like interesting and engaging, than

understandable and consistent. In the Reddit training data, the former two qualities show more variation

than the latter. For example, there are interesting and un-interesting utterances, however most utterances on

Reddit are generally understandable. The former two qualities are also more likely to influence the system

response. Conversely, the latter two qualities are unlikely to be acknowledged in the response. For example,

since Reddit is a multi-participant forum and not a one-on-one conversation, inconsistencies in conversation
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Quality 345M fs 345M ft 762M fs 762M ft
Turn-Level

Interesting 0.388 0.431 0.406 0.408
Engaging 0.268 0.285 0.278 0.318
Specific 0.260 0.326 0.270 0.267
Relevant 0.028 -0.027 0.001 0.152
Correct 0.000 0.037 0.020 0.133
Semantically Appropriate 0.040 0.177 0.141 0.155
Understandable 0.047 0.048 0.075 0.111
Fluent 0.157 0.184 0.133 0.224
Overall 0.122 0.092 0.094 0.209

Dialog-Level
Coherent 0.195 0.151 0.149 0.251
Error Recovery 0.165 0.128 0.126 0.165
Consistent 0.041 0.011 0.006 0.116
Diverse 0.449 0.431 0.414 0.420
Topic Depth 0.522 0.479 0.470 0.476
Likeable 0.047 0.172 0.224 0.262
Understanding 0.237 0.174 0.192 0.306
Flexible 0.260 0.408 0.298 0.293
Informative 0.264 0.328 0.337 0.288
Inquisitive 0.137 0.143 0.298 0.163
Overall 0.401 0.359 0.355 0.443

Table 5.1: Spearman correlations with human judgement. All values that are not statistically significant
(p > 0.05) are italicized. The highest correlation for each quality is shown in bold.
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history are unlikely to be reflected in the response. As such, it is unsurprising that this approach struggles to

measure the consistency of a dialog.

An optimal generation model (e.g., a human) should exhibit compositionality and be capable of pro-

ducing utterances that have never been observed. For example, even if ‘That is not consistent’ has never

appeared in the training data, a compositional model would be capable of generating it. This difference

in performance across the different dialog qualities suggests that DialoGPT exhibits some degree of com-

positionality, as evidenced by its ability to compose some follow-up utterances which are not frequently

observed in the Reddit data (e.g., ‘You really don’t know much?’), however it still struggles with follow-up

utterances consisting of less frequently observed concepts (e.g., consistent, understandable).

5.2.3 Discussion

The FED metric is shown to effectively measure eighteen fine-grained qualities of dialog without any

supervision and without comparing to a reference response. This type of zero-shot generalization to unseen

outputs (i.e., dialog qualities) is facilitated by incorporating inductive biases in the problem formulation.

Motivated by knowledge of the capabilities of pre-trained language models, FED reformulates the prob-

lem of dialog evaluation in order to leverage the notion of dialog quality that was implicitly captured by

DialoGPT. This reformulation serves as an inductive bias that facilitates zero-shot generalization to new

outputs. While inductive biases in the model architecture incorporate are motivated by knowledge of the

problem, inductive biases in the problem formulation are conversely motivated by knowledge of the pre-

trained model’s capabilities. The problem reformulation serves as an inductive bias that achieves better

alignment between the capabalities of DialoGPT and the requirements of the problem of dialog evaluation.

5.3 Reformulating Slot Filling

Recent work has validated the idea that stronger alignment between pre-trained models and the downstream

problem formulation results in improved performance. Rather than fine-tuning off-the-shelf models, it is

more effective to first understand the downstream problem and adapt the model’s architecture, pre-training

and inference algorithm accordingly. Adapting pre-trained models in this manner is equivalent to incor-
porating inductive biases about the downstream problem into the model architecture, as described in

the previous chapter. For example, pre-training on open-domain dialog data results improves performance

on downstream dialog tasks [Henderson et al., 2019; Mehri et al., 2020a]. Designing task-specific pre-

training objectives has yielded strong results in extractive question answering [Glass et al., 2019], paraphrase

and translation [Lewis et al., 2020] and slot filling [Henderson and Vulić, 2020]. This body of work at-

tains stronger alignment by significantly modifying the pre-trained model through task-specific pre-training.

However, this approach necessitates a new pre-trained model for every downstream problem, and therefore

relinquishes the inherent scalability of the transfer learning paradigm. In this work, stronger alignment

is instead achieved by simultaneously adapting both the pre-trained model and the downstream problem
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Figure 5.1: To achieve a stronger alignment, both the downstream problem and the pre-trained models must
be adapted. The downstream problem can be adapted with knowledge of the properties and capabilities of
the pre-trained models. Likewise, the pre-trained model can be adapted with knowledge of the downstream
problem/data.

formulation, such that both contain inductive biases about the other.

The downstream problem formulation can be adapted to achieve stronger alignment with the capabilities

of the pre-trained model. To effectively leverage pre-trained models, it is important to first understand the

properties and capabilities of the model derived from the model architecture, the pre-training data and task.

Then the downstream problem can be adapted to be better aligned with the model. Adapting the task

formulation to the model is equivalent to incorporating inductive biases about the pre-trained model
into the downstream problem. By simultaneously adapting both the downstream problem and the pre-trained

model, it is possible to achieve stronger alignment without sacrificing the inherent scalability of the transfer

learning paradigm (i.e., avoiding task-specific pre-trained models).

This work addresses the task of slot filling, a natural language understanding task with the goal of

identifying values for pre-defined attributes (slots) in a natural language utterance. DialoGPT [Zhang et al.,

2019c], a generative language model pre-trained on open-domain dialog data, is leveraged for the task of

slot filling. To achieve strong alignment between the slot filling task and DialoGPT, this work proposes to

(1) reformulate slot filling as a natural language response generation task, and (2) augment the DialoGPT

architecture with a copy-mechanism, constrained decoding and a post-processing heuristic. The resulting

model, GENSF (Generative Slot Filling), is shown to achieve state-of-the-art results on two slot filling

datasets. GENSF achieves the strongest performance gains in few-shot and zero-shot settings, highlighting

the importance of stronger alignment as a mechanism of inducing generalization both to new inputs and new

outputs.
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5.3.1 Methods

In order to effectively leverage a pre-trained generative dialog model, DialoGPT [Zhang et al., 2019c], for

the task of slot-filling, this work introduces the GENSF model which achieves stronger alignment between

the downstream problem and the pre-trained model, by simultaneously adapting the task to the model and

the model to the task. First, the slot filling task is reformulated as a natural language response generation

task to be better aligned with the DialoGPT model. Next, several modifications are made to the DialoGPT

architecture and inference algorithm that act as inductive biases for the slot filling task.

Slot Filling as Response Generation

Given an utterance u = {w1, w2, . . . wn}, a set of possible slot keys s = {s1, s2, . . . sk}, and a list of slots

requested by the system r = {r1, r2, . . . rm} (where ri ∈ s and m ≥ 0), the task of slot filling is to assign

a value to a subset of the slot keys. Concretely, for a given slot key si, the output will either be NULL or a

contiguous span of words from the utterance: si = {wi, . . . wi+j}.
In response generation, given a dialog context consisting of a sequence of utterances: c = {x1, x2, . . . xn}

wherein each utterance xi is a sequence of words, the task is to generate a valid response y = {w1, w2, . . . wm}.
Many tasks can be represented as an input to output mapping [Raffel et al., 2019; Hosseini-Asl et al.,

2020; Peng et al., 2020a], making sequence-to-sequence a universal formulation. Trivially, slot filling can be

represented as a sequence-to-sequence task by setting the context to be the concatenation of the utterance and

the requested slots: c = {u, r} and the target response to be the slot mappings

y = {(s1, wi:j), (s2, NULL), . . . (sk, (wj:n)}. However, this does not leverage the natural language capa-

bilities of pre-trained dialog models. While this trivial formulation may suffice with sufficient training, it

will under-perform in few-shot and zero-shot settings. To this end, this work presents a reformulation of slot

filling that better aligns with the natural language capabilities of DialoGPT.

We hypothesize that to some degree, large-scale dialog pre-training can result in a model implicitly

learning to fill slots. For example, given the slot key ‘time’, such a model should understand what time

is and should be able to generate a valid time (e.g., ‘4:15 pm’). An effective problem formulation can

leverage these implicitly learned slot filling capabilities. An off-the-shelf pre-trained model is likely to only

be capable of filling generic slots (e.g., time, date, price, etc.). But by reformulating slot filling in a manner

that is better aligned with the pre-training task, it should be easier for the model to adapt to novel slot keys.

Concretely, given a slot filling input (u, r) and a particular slot key si, a natural language dialog context

is constructed using a template-based approach: c = ‘What is the {f(r)}? [eos] {u} [eos] Ok, the

{f(si)} is’. Here, f denotes a manually constructed function that maps slot keys to a natural language phrase

(e.g., first_name: first name, departure_location: leaving from). Given the constructed dialog context,

the model is tasked with completing the partial response (i.e., Ok, the {f(si)} is) by auto-regressively

generating the slot value. During training the model would be tasked with generating either the slot value

or the phrase not provided. With this natural language reformulation, the slot filling task is being adapted

to better leverage the capabilities of the pre-trained DialoGPT model. As this achieves better alignment
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Utterance Requested Slots Slot Key Natural Language Context

We will require an outside
table to seat 9 people on

August 23rd
None date

We will require an outside table
to seat 9 people on August 23rd

[EOS] Ok, the date is

Laurice Hoisl
first_name,
last_name

first_name
What is the first name, last

name? [EOS] Laurice Hoisl
[EOS] Ok, the first name is

My party will be 9 people.
My name is Nancie

Waltemeyer and the time
is 7pm

None people

My party will be 9 people. My
name is Nancie Waltemeyer and
the time is 7pm [EOS] Ok, the

number of people is

Table 5.2: Examples of slot filling inputs reformulated as natural language dialog contexts

between the pre-trained model and the downstream problem, it should be more effective for zero-shot and

few-slot filling. To better illustrate the conversion of the slot-filling input (utterance u and request slots r),

several examples are shown in Table 5.2.

DialoGPT for Slot Filling

In order to adapt the pre-trained DialoGPT model to the slot filling task, the architecture is augmented and

the inference algorithm is modified. These adaptations are motivated by the observation that if the slot value

is provided, it will always be a contiguous span of tokens from the utterance. As such, the generative model

can only produce: (1) ‘not provided‘ if the slot does not appear in the utterance, (2) the end of sentence

token, and (3) tokens from the input utterance.

A copy-mechanism is incorporated into the DialoGPT architecture to allow the model to explicitly gen-

erate tokens from the input utterance. Given a context c = {x1, x2, . . . xn}, through its self-attention layers,

the model will produce a hidden state representation for each token, h = {h1, h2, . . . , hn}. A probability

distribution over the vocabulary is then obtained by passing hn through a classification layer:

Pvocab = softmax(Whn + b) (5.2)

To explicitly generate tokens from the input, hn is used to attend to h1:n to produce a probability distri-

bution over x1:n. The process for computing the probability for a specific word, Pcopy(w) is as follows:

α = softmax(hTnh1:n) (5.3)

Pcopy(w) =
∑

i:xi=w

αi (5.4)

These two probability distributions are combined through a weighted sum. The weight assigned to each
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of the distributions is predicted using hn:

pcopy = σ(Wcopyhn + bcopy) (5.5)

The final probability distribution is therefore:

Pfinal = (1− pcopy)Pvocab + pcopyPcopy (5.6)

The copy-mechanism requires training, as it introduces new weights (wcopy, bcopy) and the off-the-shelf

DialoGPT model does not necessarily produce meaningful attention weights, α, that can be used to create an

output probability distribution. As such, to attain strong zero-shot performance, the inference algorithm is

also modified to account for the aforementioned observation. This is done using both constrained decoding

and a post-processing heuristic.

Constrained decoding is a modification of greedy decoding wherein the argmax sampling is modified to

only generate (1) words that appear in the input utterance, (2) the end of sentence token and (3) the phrase

‘not provided’.

The slot values may consist of terms that the model has not frequently observed during pre-training (e.g.,

names, times). As such, because the DialoGPT model leverages a subword vocabulary, some subword tokens

may be dropped during generation and therefore the slot values may be generated with typos (e.g., ‘Mocer’

vs ‘Mocher’). A simple post-processing heuristic is applied to mitigate this problem. If the slot value

produced by the model is not present in the utterance, the Levenshtein distance to every contiguous span of

tokens in the utterance is computed. If the best edit distance is within a certain threshold (0.3× len(y)), the

corresponding span is returned as the slot value.

Through these modifications, the DialoGPT model is adapted to reflect the properties of the slot filling

task. The copy-mechanism, constrained decoding and post-processing mechanism serve as an inductive bias

to enable the pre-trained model to be better adapted for the downstream slot filling task.

5.3.2 Experiments

Experiments are performed to empirically validate the hypothesis that simultaneously adapting the down-

stream problem and the pre-trained model results in stronger alignment and improved performance. Ex-

periments are presented on two datasets which assess GENSF in full-data, few-shot and zero-shot settings.

An ablation study is performed to characterize the source of the performance gains and demonstrate the

importance of simultaneous adaptation.

Datasets

Experiments are carried out on RESTAURANTS-8K [Coope et al., 2020] and the DSTC8 datasets [Rastogi

et al., 2020a]. RESTAURANTS-8K consists of 8,198 utterances from a commercial restaurant booking system

and includes 5 slots (date, time, people, first name, last name). The DSTC8 datasets span four different
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Fraction Span-ConveRT Span-BERT ConVEx GenSF

1 (8198) 95.8 93.1 96.0 96.1
1/2 (4099) 94.1 91.4 94.1 94.3
1/4 (2049) 91.2 88.0 92.6 93.2
1/8 (1024) 88.5 85.3 90.6 91.8
1/16 (512) 81.1 76.6 86.4 89.7
1/32 (256) 63.8 53.6 81.8 82.1
1/64 (128) 57.6 42.2 76.0 76.1
1/128 (64) 40.5 30.6 71.7 72.2

Table 5.3: F1 scores across all slots for the evaluation on the RESTAURANTS-8K test data with varying pro-
portions of the training set. Numbers in brackets denote the training set sizes. The best scores (statistically
significant by t-test to p < 0.05) are shown in boldface.

domains (buses, events, homes, rental cars) for a total of 5,569 utterances with slot annotations extracted by

Coope et al. [2020].

In both datasets, the value for a particular slot is always a contiguous span of the utterance. Some

utterances consist of a set of slots requested by the system prior to the user utterance. This allows an

otherwise ambiguous utterance like ‘four’ to be interpreted as either ‘four people’ or ‘four o’clock’.

Experimental Setup

The experiments use the pre-processing and evaluation scripts provided by the DialoGLUE benchmark

[Mehri et al., 2020a]. The setup of Coope et al. [2020] and Henderson and Vulić [2020] is followed,

wherein a validation set is not used and the experiments are therefore performed with fixed hyperparam-

eters. Throughout all the experiments, the medium version of DialoGPT [Zhang et al., 2019c] is used. The

AdamW optimizer [Loshchilov and Hutter, 2017] is used with a learning rate of 5e-5. On RESTAURANTS-

8K, the models are trained for 10 epochs in the full-data setting, 20 epochs in the few-shot settings and 40

epochs in the extreme few-shot settings (1/32 - 1/128; or less than 256 training examples). On the DSTC8

datasets, the models are trained for 20 epochs in the full-data setting and 40 epochs in the few-shot setting.

The models are evaluated on the full test set, regardless of the amount of training data, using macro-

averaged F1 score [Coope et al., 2020].

Slot Filling Results

The experiments compare GENSF to several models from prior work. Span-ConveRT [Coope et al., 2020]

and Span-BERT train a CNN and a CRF on top of contextual subword embeddings produced by ConveRT

[Henderson et al., 2019] and BERT [Devlin et al., 2018], respectively. ConVEx [Henderson and Vulić, 2020]

devises a pairwise cloze pre-training objective specifically for slot-filling. This task-specific pre-training

objective is an example of significantly adapting the pre-trained model to the downstream problem. In
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Setting Span-ConveRT Span-BERT ConVEx GenSF

Buses_1 Full-Data (1133) 93.5 93.3 96.0 98.1
Few-Shot (283) 84.0 77.8 86.7 90.5

Events_1 Full-Data (1498) 92.7 84.3 91.7 94.7
Few-Shot (374) 82.2 78.6 87.2 91.2

Homes_1 Full-Data (2064) 94.8 96.3 98.3 96.9
Few-Shot (516) 95.4 95.1 94.5 93.7

RentalCars_1 Full-Data (874) 94.0 92.8 92.0 93.5
Few-Shot (218) 83.0 81.4 87.4 86.7

Table 5.4: F1 scores across all slots for evaluation on the DSTC8 single-domain datasets in the full-data and
few-shot settings. Numbers in brackets denote training set sizes. The best scores (statistically significant by
t-test, to p < 0.05) are shown in boldface.

contrast to ConVEx, GENSF achieves strong alignment between the pre-trained model and the downstream

problem by simultaneously adapting both the problem and the model. As such, GENSF does not need a

task-specific pre-trained model and is inherently more scalable. The ConVEx pre-training takes 8 hours to

train on 12 GPUs, while GENSF takes less than four hours to train on a single GTX 1080TI.

As shown in Table 5.3, GENSF achieves state-of-the-art results across all experimental settings on the

RESTAURANTS-8K dataset. In the full-data setting, GENSF slightly outperforms ConVEx. Though the

performance gain is small, this result signifies that the proposed model can leverage an abundance of data.

The value of strong alignment between the downstream problem and the pre-trained model is better exem-

plified in the few-shot settings. Especially in the extreme few-shot settings (i.e., 1/32 - 1/128 of the training

set), GENSF strongly outperforms Span-ConveRT and Span-BERT, with greater than 30 F1 score improve-

ments. The few-shot performance of both ConVEx and GENSF in these few-shot settings underlies the value

of effectively aligning the pre-trained model and the downstream problem. However, GENSF achieves this

alignment by simultaneously incorporating inductive biases about the model into the problem rather than

designing a complex pre-training objective. By incorporating inductive biases into both the problem formu-

lation and the model, the proposed approach does not require task-specific pre-trained models and therefore

preserves the inherent scalability of the transfer learning paradigm. Furthermore, GENSF attains moderate

improvements over ConVEx, especially in the few-shot settings, with a 3 F1 score improvement in the 1/16th

setting.

The results on the DSTC8 single-domain datasets is shown in Table 5.4. Here, the models are evaluated

on both full-data and few-shot (25% of the training data) settings. On average, GENSF achieves strong

performance improvements over prior work. In the full-data settings the best performance is observed on

the buses and events domains, where GENSF achieves a 2.1 and 3.0 F1 score improvement over ConVEx,

respectively. In the few-shot settings, GENSF achieves a 4.0 F1 score improvement over ConVEx on these

79



domains and a 6.5 and 9.0 point improvement over Span-ConveRT. These strong improvements, over both

Span-ConveRT and ConVEx, highlight the value of strong alignment between the pre-trained model and the

downstream problem, particularly in the few-shot experiments.

GENSF moderately underperforms on the homes and rental cars domains. On the homes domain,

GENSF outperforms Span-ConveRT and Span-BERT but scores 1.4 points below ConVEx. Similarly, on the

rental cars domain, GENSF outperforms ConVEx and Span-BERT, but is 0.5 points below Span-ConveRT.

Though GENSF is still competitive in these domains, these results nonetheless highlight a weakness of

the model. The use of a generative pre-trained dialog model, specifically DialoGPT [?], was motivated by

the hypothesis that such models can implicitly learn to identify certain slots through response generation

pre-training. This hypothesis is empirically validated through improved performance on RESTAURANTS-8K

and the buses/events domains of DSTC8. GENSF relies on the pre-trained model having an implicit un-

derstanding of the slots. This implicit understanding results in strong performance on slots like ‘time’ or

‘first name’, since such terms are likely to have been observed during pre-training. However, this is not

the case for all slots and GENSF can underperform on slots that are ambiguous, ill-defined or are unlikely

to have been observed during open-domain dialog pre-training. The homes domain consists of the slot,

‘area’, which has several definitions and is therefore challenging for the pre-trained model to understand

and detect. The rental cars domain contains the slots ‘pickup date’ and ‘dropoff date’. While the DialoGPT

model has learned to detect a ‘date’, the distinction between these two slots is more nuanced and therefore

may cause some amount of confusion. As such, while GENSF is competitive in these domains and is only

outperformed by one of the three models, these domains demonstrate that there are limitations at present to

leveraging a generative pre-trained model. However, it is possible that by further adapting the downstream

problem to the pre-trained model, for example by renaming these slots (e.g., ‘area’ may be renamed to

‘city’), the performance drops may be mitigated.

Overall, GENSF achieves impressive performance gains in both full-data and few-shot settings, under-

lying the value of achieving strong alignment between the pre-trained model and the downstream prob-

lem. Furthermore, GENSF achieves this alignment by simultaneously adapting both the problem and the

model and without sacrificing the inherent scalability of the transfer learning paradigm or necessitating task-

specific pre-training. In the RESTAURANTS-8K and the single-domain DSTC8 datasets, GenSF achieves

state-of-the-art results and outperforms prior work. In few-shot settings, the proposed model achieves a 30

F1 score improvement over Span-BERT and Span-ConveRT. On average, GenSF moderately outperforms

ConVEx, with > 2.0 F1 score improvements in the few-shot settings on RESTAURANT-8K, and both the

full data and few-shot settings on two of the DSTC8 datasets. These experiments empirically validate (1) the

importance of aligning the pre-trained model and the downstream problem by simultaneously incorporating

inductive biases into both the problem and the model and (2) that through response generation pre-training,

dialog models have implicitly learned to detect certain slots, which can be leveraged by effectively adapting

the downstream problem.
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Slot Metric Coach+TR ConVEx GenSF

P 1.7 2.3 13.7
First Name R 4.1 20.1 36.1

F1 2.5 4.1 19.8

P 0 1.9 10.6
Last Name R 0 16.2 19.7

F1 0 3.4 13.8

P 10.2 2.2 10.7
Date R 34.8 10.1 15.3

F1 15.7 3.6 12.6

P 47.4 5.6 27.5
Time R 27.9 23.6 46.9

F1 35.1 9.1 34.7

P 0 3.8 14.5
People R 0 13.9 18.9

F1 0 6.0 16.4

Average F1 10.7 5.2 19.5

Table 5.5: Zero-shot slot filling results on RESTAURANTS-8K. All models are evaluated on the test set
without any training on the dataset.

Zero-shot Slot Filling

For zero-shot slot filling, there must be strong alignment between the pre-trained model and the downstream

problem. Since the model is not fine-tuned on the downstream corpus, it is necessary to effectively align

the formulation of the downstream problem to the capabilities of the model. As such, zero-shot experiments

validate the inductive biases incorporated into the problem formulation, i.e., slot filling being reformulated

as natural language response generation.

For these experiments, GENSF is compared to the published results of ConVEx [Henderson and Vulić,

2020]. Furthermore, a Coach+TR model [Liu et al., 2020] is run on the RESTAURANT-8K dataset. Note that

while ConVEx and GENSF have only been trained on open-domain dialog, Coach+TR trains on adjacent

task-oriented domains (i.e., SNIPS), meaning that the zero-shot performance is higher on slots that are

domain agnostic.

The experiments use the RESTAURANTS-8K dataset. The copy-mechanism is removed from the model,

as it adds additional weights to the model and therefore requires training. However, the constrained decoding

and the post-processing heuristic of GENSF, allow the model to enforce that the slot values will always be

a contiguous span from the input utterance. Table 5.5 demonstrates that GENSF significantly outperforms
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Model Full-Data Few-Shot (1/16) Zero-Shot

GenSF 96.1 89.7 19.5

Removing Model Adaptation

– Copy-mechanism 95.6 87.8 19.5
– Constrained Decoding 95.4 89.5 0.5
– Post-processing 96.1 89.7 18.1
– All model adaptation 95.4 87.8 0.5

Removing Problem Adaptation

– Natural Language Slot Names 95.3 86.6 12.2
– Natural Language Templates 94.8 88.5 0.0
– All Natural Language 95.5 88.9 0.0

Removing All Adaptation

– All Adaptation 95.8 89.2 0.0

Table 5.6: Ablation experiments. We remove (1) adaptations to the model, (2) adaptations to the down-
stream problem and (3) all adaptations proposed in this work. The experiments are carried out on the
full-data, few-shot (1/16th of the training set) and zero-shot settings of RESTAURANTS-8K.

prior work on zero-shot slot filling with a 14 F1 score improvement over ConVEx and a 9 F1 score
improvement over Coach+TR. These results further validate the hypothesis that pre-trained dialog models

have implicitly learned to detect slots and that this ability can be leveraged through the proposed problem

reformulation.

Most noteworthy is the performance on the ‘first name’ and ‘last name’ slots. This suggests that, to

some degree, DialoGPT [Zhang et al., 2019c] can disambiguate between a first name and a last name when

provided simultaneously (e.g., ‘my name is Lakesha Mocher’). It should be noted that the macro-averaged

F1 score used to evaluate the models considers a slot value to be incorrect unless it exactly predicts the

ground-truth slot value. In many cases, the GENSF model produces appropriate slot values that differ

from the ground-truth, e.g., ‘wednesday’ instead of ‘next wednesday’. It is possible that by incorporating

additional inductive biases about the specific formulation of the slot values (e.g., slots should have maximal

information) into the inference algorithm, the zero-shot performance can be further increased.

GENSF is shown to strongly outperform prior work on zero-shot slot filling. This impressive perfor-

mance validates the proposed approach of simultaneously adapting both the downstream problem and the

pre-trained model. Furthermore, zero-shot performance also confirms the hypothesis that pre-trained re-

sponse generation models have implicitly learned to understand and detect slots, thereby highlighting the

potential of leveraging generative pre-trained models for language understanding tasks. Future work should

explore mechanisms for reformulating other downstream problems (e.g., intent prediction, dialog state track-

ing) in order to leverage generative pre-trained models. Furthermore, it is possible that these zero-shot results
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could be further improved through two-stage pre-training (e.g., further pre-train with the ‘pairwise cloze’

task).

Ablation

GENSF has been shown to outperform prior work in full-data, few-shot and zero-shot settings. To deter-

mine the source of the improvements, an ablation study is carried out. The ablation experiments remove

the adaptations used in GENSF and evaluate on RESTAURANTS-8K across full-data, few-shot (1/16 of the

training set) and zero-shot settings. Removing all the ablation, is equivalent to training a DialoGPT model

from scratch on the problem, similar to the approach proposed by Madotto [2020].

As shown in Table 5.6, the various adaptations are vital to the strong performance of GENSF. Of the

model adaptations, only the copy-mechanism is necessary in the full-data setting, since the model effectively

learns to copy tokens from the input utterance and therefore does not need constrained decoding and post-

processing. However, constrained decoding is necessary for the zero-shot settings, as the zero-shot model

does not leverage a copy-mechanism. Problem adaptation, especially the use of natural language templates,

is shown to be important across all of the experimental settings. This highlights the importance of formu-

lating the downstream problem in a manner that can effectively leverage the capabilities of the pre-trained

models.

The results of the ablation study further validate this work’s primary hypothesis. Pre-trained models

work better for downstream problems, when the problem and the model are effectively aligned. As shown

in the results of the ablation study, removing this adaptation results in a performance decrease.

5.3.3 Discussion

GENSF is shown to perform well on the problem of slot filling in full data, few-shot and zero-shot settings.

The strong performance of GENSF is facilitated by achieving strong alignment between the capabilities of

the pre-trained model and the requirements of the downstream problem. This work incorporates inductive

biases into the problem formulation, and facilitates generalization to new inputs and new outputs (i.e., unseen

slots) in both few-shot and zero-shot settings. The reformulation of slot filling as a generation problem, is

motivated by knowledge of the capabilities of DialoGPT – specifically the hypothesis that DialoGPT has

implicitly learned the meaning of certain slots over the course of large-scale pre-training (e.g., DialoGPT

knows what time is). The strong zero-shot performance of GENSF validates the notion that reformulating

a problem can result in stronger alignment and thereby facilitate generalization. GENSF demonstrates that

understanding the capabilities of a pre-trained model and consequently incorporating inductive biases into

the problem formulation can induce generalization to new inputs and new outputs.
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5.4 Conclusion

This chapter validates the efficacy of incorporating inductive biases into the problem formulation as a means

of inducing generalization and effectively leveraging pre-existing capabilities of pre-trained models. The

first study demonstrates that the problem of dialog evaluation can be reformulated as a response generation

task, thereby leveraging the pre-existing capabilities of DialoGPT. Through this reformulation, the FED

metric exhibits zero-shot generalization to new inputs and new outputs. The second study similarly refor-

mulates slot filling as a response completion task. Similar to FED, the GENSF model achieves few-shot

and zero-shot generalization through an inductive bias in the problem formulation which allows the model

to leverage the pre-existing capabilities of DialoGPT. Inductive biases in the problem formulation can result

in stronger alignment between the capabilities of a pre-trained model and a downstream problem, thereby

facilitating generalization.
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Chapter 6

Task Specification as an Inductive Bias

6.1 Introduction

Thus far, this proposal has discussed three types of inductive biases that induce three classes of general-

ization in dialog. Concretely, the three inductive biases studied are (1) through self-supervised training

(Chapter 3), (2) inductive biases in the model architecture (Chapter 4) and (3) inductive biases in the prob-

lem formulation (Chapter 5). These inductive biases are shown to facilitate generalization to new inputs

(i.e., domain shift), to new outputs (i.e., new intents, dialog qualities and slots) and to new problems (i.e.,

one model for multiple downstream problems). The fourth class of generalization that this proposal aims

to address is generalization to new tasks. Generalization to new tasks is the problem of flexibly adapting a

model of dialog to an unseen task. Consider a system that has been trained to handle several different tasks

(e.g., restaurant reservations, ride booking, weather, etc.). How can this dialog system be extended to handle

a new task (e.g., hotel booking), without collecting additional data? This chapter tackles this challenge and

aims to address the problem of zero-shot generalization to new tasks.

The three types of inductive biases discussed thus far are insufficient for inducing generalization to

new tasks. This class of generalization is the most challenging, as it necessitates that a model be capable

of generalizing both to new inputs (caused by domain shift) and to new outputs (because new tasks may

require new output classes). Furthermore, generalization to new tasks requires that models of dialog adapt

to unseen and unknown dialog policies. A task-specific dialog policy defines a particular task, by specifying

how the system should respond to different user utterances. For example, the policy may indicate that after

the user provides their name – the system should ask for their date of birth. When generalizing to an unseen

task, particularly in zero-shot settings, the data-driven model has no notion of the dialog policy for the new

task. To facilitate this class of generalization, this thesis proposal presents a new type of inductive bias: the

task specification as an inductive bias or the schema-guided paradigm.

Traditionally, an end-to-end dialog system must perform three distinct tasks. First, it must understand the

dialog history and identify any relevant user intents or slots. Next, it must decide on the appropriate system

action, according to a task-specific dialog policy. Finally, it must generate a natural language utterance

85



Figure 6.1: In the standard paradigm, data driven models implicitly learn the task-specific dialog policies
(i.e., schemas). This precludes generalization to an unseen task at inference time. In contrast, in the schema-
guided paradigm, dialog policy is explicitly provided to the model through a schema graph. At inference
time, the model is given the schema for the new task and can therefore generalize in a zero-shot setting.
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corresponding to the system action. In a pipeline dialog system, these three steps are performed by the

NLU, DM and NLG respectively [Jurafsky, 2000]. Prior work, as well as prior chapters in this proposal,

have exhibited generalizability in language understanding and in language generation. However for end-

to-end dialog, the task-specific dialog policy inherently precludes zero-shot generalization. An end-to-end

dialog model trained on several dialog tasks, will implicitly learn the task-specific dialog policies from the

data. However, when generalizing to an unseen task in a zero-shot setting, the model has no knowledge of

the dialog policy for the new task.

To address the difficulty of generalizing to new task-specific dialog policies and in order to facilitate

zero-shot generalization, this chapter presents the schema-guided paradigm. In addition to leveraging all

of the aforementioned types of inductive biases, the schema-guided paradigm introduces an inductive bias

that represents the task-specific dialog policy and thereby facilitates generalization to new tasks. Generally,

end-to-end neural models implicitly learn the task-specific dialog policies from large corpora. In contrast,

the schema-guided paradigm explicitly provides the task-specific dialog policies to the model in the form of

a schema graph. The schema graphs are manually constructed graphs which define the system’s behavior

for a specific task (e.g., when the user provides the reservation time, ask them for the number of people).

When transferring to an unseen task, the corresponding schema graph is explicitly provided to the model.

This enables language understanding and the dialog policy to be decoupled. The model no longer needs to

implicitly memorize the task-specific policies from the training data. Instead, the model learns to interpret

the dialog history and align it to the schema graph. As such, when transferring to a new task, the schema

graph serves as an inductive bias that provides the model with the task-specific dialog policy. In contrast to

research which uses graphical models or graph-based representations of the dialog history, in the schema-

guided paradigm the use of graphs is primarily for the purpose of representing the task-specific dialog policy.

A high-level visualization of the schema-guided paradigm is pictured in Figure 6.2.

This chapter presents one completed study that validates the efficacy of the schema-guided paradigm

as a mechanism for inducing zero-shot generalization to unseen tasks. The work described in Section 6.2

introduces the Schema Attention Model (SAM) and thorough schema representations for the 24 different

tasks in the STAR corpus [Mosig et al., 2020]. SAM obtains a +22 F1 score improvement over baseline

approaches in the zero-shot setting, validating the schema-guided paradigm and demonstrating the feasibility

of zero-shot generalization to new dialog tasks. Building on this work, Section 6.3 proposes to extend

the schema-guided paradigm to the problem of end-to-end response generation, with a particular focus on

enforcing controllability (via the task specification) and robustness in end-to-end schema-guided models of

dialog. The proposed work aims to further validate the use of the task specification as an inductive bias for

facilitating generalization to new tasks in realistic zero-shot settings.

6.2 Schema Attention Model

This work introduces the schema-guided paradigm, a mechanism for inducing generalization to new dialog

tasks by representing the task-specific dialog policy as a structured graph representation. In the schema-
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guided paradigm, the explicit task specification serves as an inductive bias that facilitates generalization to

unseen dialog tasks. Rather than forcing models of dialog to implicitly memorize the task-specific dialog

policy, the proposed Schema Attention Model (SAM) instead trains a dialog model that learns to leverage an

explicit representation of the task specification (i.e., the schema) in order to complete the task. The Schema

Attention Model, SAM, improves upon baseline models presented by Mosig et al. [2020] by introducing user-

aware schema graphs as well as improving the model architecture and the training algorithm. SAM obtains a

+22 F1 score improvement over baseline approaches in the zero-shot setting, validating the schema-guided

paradigm and demonstrating the feasibility of zero-shot generalization to new dialog tasks.

6.2.1 Task Definition

In the STAR dataset, there are 23 dialog tasks (13 domains) with happy single-task dialogs. This work

performs two types of transfer learning experiments: task transfer and domain transfer. In task transfer, a

model is trained on n − 1 tasks (i.e., 22) and evaluated on the last one. This is repeated for each of the 23

tasks. For domain transfer, a model is trained on n − 1 domains (i.e., 12) and evaluated on the last one. In

task transfer, there may be some overlap between the training and testing, for example, the domain-specific

terminology. In contrast, in domain transfer there is very limited overlap. When the model is tasked with

generalizing to the restaurant domain, it has seen nothing related to restaurants during training.

In both of these settings, the model is aware of which task it is being evaluated on, meaning that it can

leverage a manually constructed task specification (e.g., schema) for the new task. This experimental design

resembles a real-world setting where a system developer would be aware of the new task. For example, if

a developer wanted to extend a dialog system to handle a COVID-19 related questions, they would be able

to manually create a new task specification. As such, the goal of this work is to develop a model that can

generalize to an unseen task conditioned on a task specification. This still constitutes zero-shot transfer, as

the dialog model has not observed any data from the target task. Future work will examine the difficulty of

constructing a new task specification (i.e., a schema graph) in order to assess the ease of zero-shot transfer.

6.2.2 Methods

In order to enable zero-shot transfer to new dialog tasks and domains, the Schema Attention Model (SAM)

is introduced. It leverages an external task-specific dialog policy representation (i.e., the schema) to predict

the next system action. This section begins by describing the baseline model for the task of next action

prediction. Next, the schema-guided paradigm is introduced (Figure 6.1). It includes a graph-based repre-

sentation of the task-specific schema and SAM, a model that identifies the next system action by attending

to a task-specific schema representation.

Baseline

This section describes the baseline model proposed by Mosig et al. [2020]. Given an arbitrary language

encoder, denoted as F , the baseline model obtains a vector representation of the dialog history, c. This
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representation is then passed through a softmax layer to obtain a probability distribution over the actions.

h = F(c) (6.1)

Pclf = softmax(WhT + b) (6.2)

Throughout this work, BERT-base [Devlin et al., 2018] is used as the language encoder.

Schema-Guided Paradigm

The baseline model simultaneously needs to (1) interpret the dialog context and identify the relevant intents

and slots, and (2) learn the task-specific dialog policies (i.e., if the user wants the weather, ask the city) for

the different tasks in the training data. This model is incapable of generalizing to a new task in a zero-shot

setting, as it would lack knowledge of the task-specific policy for the new task. To mitigate this problem

and to enable zero-shot task transfer, the schema-guided paradigm decouples the task-specific dialog policy

from the language understanding.

An example is shown in Figure 6.1: the schema-guided paradigm decouples the the dialog policy from

language understanding by explicitly providing task-specific schema graphs as input to the model. These

schema graphs serve as complete representations of the dialog policy for a given task. Therefore, while

the baseline needs to implicitly learn the dialog policies, a schema-guided model instead learns to leverage

the explicit schema graphs. As such, a schema-guided model can generalize to a new task as long as it is

provided with the corresponding schema graph.

In this paradigm, the role of the model is to interpret a dialog context and align it to the explicit schema

graph. The role of the schema graph is to determine the next action according to the dialog policy. In this

manner, the language encoder is being trained for the task of sentence similarity. With the help of pre-trained

models, language understanding in a schema-guided paradigm can be considered to be task-agnostic. By

decoupling the task-agnostic language understanding and the task-specific dialog policy, the schema-guided

paradigm better facilitates zero-shot transfer learning.

The schema-guided paradigm consists of the representation of the schema graph, and a neural model

which interprets the dialog context and aligns it to the schema graph.

Schema Representation

In the schema-guided paradigm, the schema representation is the task-specific dialog policy. To ensure the

efficacy and robustness of the dialog system, it is important that the schema representation be complete

and informative. In the case of ambiguity or incompleteness in the schema representation, the next action

will fail to be correctly predicted, regardless of the strength of the model. The schema representations are

manually constructed for every task. In the schema-guided paradigm, to transfer to a new task, a system

developer would simply need to construct a new schema.
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Mosig et al. [2020] propose a baseline schema representation wherein the nodes of the graph correspond

to system actions and database states. There are nodes for user states only in situations where the system

behavior differs depending on the user’s actions (e.g., ‘Yes’→ ask-time, ‘No’→ ask-date). The consequence

of this representation is that when the model aligns the dialog history to the schema, it largely relies on the

system utterances. However, this representation fails to account for realistic user behavior and therefore

yields only marginal improvement over the baseline.

Specifically, users will often provide information out of turn (e.g., System: ‘Where would you like to

go?’ → User: ‘Leaving from the airport and going downtown’). In this example, it is difficult for the model

to realize that the question System: ‘Where are you leaving from?’ has also been answered and therefore

should not be the next system action. Users can also ignore the system utterance (e.g., System: ‘Where would

you like to go?’ → User: ‘Actually, what’s the weather?’). It is thus ineffective to represent dialog policy

only in terms of the system utterances. To this end, we extend the schema representation by incorporating

user utterances into the schema graph.

As shown in Figure 6.2, the new schema graphs incorporate nodes corresponding to user utterances. As

such, if a user provides information out of turn or changes the subject, the model will be able to effectively

align the dialog to the schema. To account for variance in the user utterances, future work could extend

this schema representation to include multiple variations of a given user utterance. However, as the schema

graphs are manually constructed for every task, there is a trade-off between manual effort and efficacy1.

The schema graph has several noteworthy properties. First, the system actions are consistently determin-

istic. Nodes corresponding to a database response or to a user utterance will always have a single outgoing

edge to a system response node. Furthermore, such nodes will also have a single incoming edge from a

system response node. For a given user/database node, u, the previous system response node is denoted as

prev(u) and the following system response as next(u). Each node has some text associated with it, denoted

as text(u). This text is a template for either a system utterance, database response or user utterance. System

nodes will also have an associated system action, act(u). There is a one-to-one mapping between the system

actions and the system response templates.

Schema Attention Model

In the schema-guided paradigm, the role of the model is to understand the dialog history and align it to

the schema representation. The Schema Attention Model, SAM, attends between the dialog history, c =

c1, . . . , cN and the schema graph. SAM extends the schema-guided model presented by Mosig et al. [2020]

by (1) leveraging a stronger attention mechanism, (2) improving the training algorithm, and (3) removing

the linear classification layer which is detrimental to zero-shot performance.

The objective of SAM is to predict the node in the schema graph that best corresponds to the dialog

context. SAM will produce a probability distribution over the nodes corresponding to user utterances and

1Constructing the schema graphs is not particularly labor-intensive. It took the author between 15 and 45 minutes to create each
schema graph, depending on the complexity of the task. Future work will carry out a more comprehensive study measuring the
difficulty of creating a schema.
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Figure 6.2: A section of the task-specific schema graph for the bank-balance task. The system must au-
thenticate the user with their account number and PIN. However, if the user has forgotten either of these,
it must ask backup security questions. The blue nodes correspond to system actions and the yellow nodes
denote user utterances.
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database responses. Given an attention distribution over the nodes, SAM can obtain a probability distribution

over the set of actions by propagating the attention probabilities over the graph. Concretely, if node u has

an attention weight of p, we add p to the probability of action(next(u)).

Every node u that corresponds to either a database response or a user utterance is considered. Each node

u is then represented as the concatenation of the previous node and the current node, i.e., text(prev(u)) +
text(u). For all nodes u ∈ U , this textual representation is obtained and is denoted as s ∈ S.

We are given a language encoder, F , the dialog context, c = c1, . . . , cN , the nodes U , their correspond-

ing textual representations S, and the set of possible actions A. Note that unlike in Equation 6.2, F is used

to produce a vector representation of each word in the input. SAM produces a probability distribution over

the actions as follows:

h1,...,N = F(c : c1, . . . , cN ) (6.3)

Si;1,...,M = F(Si : s1, . . . , sM ) (6.4)

wi
j,k = hT

j Si;k (6.5)

α = softmax(w1,...,|S|) (6.6)

pi =
∑
j≤N

∑
k≤M

αi
j,k (6.7)

Here,wi is an N ×M dimensional matrix corresponding to the dot product between theN words of the

dialog history and the M words of the i-th textual representation in S. To get the attention weights over all

of the words of the schema, a softmax is performed over all wi, 1 ≤ i ≤ |S|. Summing over the attention

weights in αi produces pi, a scalar value which denotes the attention between the dialog history and the i-th

node (i.e., the corresponding textual representation Si). Given pi, a probability distribution over the actions

A is produced as follows:

g(i, a) =

pi, if action(next(ui)) = a

0, otherwise
(6.8)

P (a) =
∑
i≤|S|

g(i, a) (6.9)

To align the dialog history to the schema graph, SAM performs word-level attention using a BERT-base

model. In contrast, the schema-guided model of Mosig et al. [2020] attends with the sentence level vector

representation produced by BERT. With the word-level attention, SAM can better align ambiguous dialog

contexts, such as situations where the user provides multiple pieces of information in a single utterance.

Since this word-level attention operates on the sub-word tokens used in BERT, it can also potentially handle

spelling errors in the user utterances.
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Model F1 score Accuracy

Baseline � 73.79 74.85
BERT+S � 71.59 72.27
SAM − [1] 54.35 60.51

SAM − [2,3,4] 70.22 71.01
SAM − [2] 70.27 71.93
SAM − [3] 70.18 71.64
SAM − [4] 69.68 69.79

SAM 70.38 71.45

Table 6.1: Performance in the standard experimental setting. Models marked with � are attributed to Mosig
et al. [2020]. We denote their schema-guided model, ‘BERT + Schema’, as BERT+S. SAM consists of four
improvements upon BERT+S: (1) user-aware schema, (2) word-level attention, (3) using negative samples
from the same task at training, (4) removing the linear classification layer. Results in boldface are statistically
significant by t-test (p < 0.01)

Furthermore, in their schema-guided model, Mosig et al. [2020] combine the probability distribution

produced by attending to the schema graph with their baseline model (i.e., Section 3.1). While this may

result in better performance on the tasks the model is trained with, the baseline model will not generalize

to unseen tasks. In contrast, SAM computes the probability for an action using only the attention over the

schema graph.

Mosig et al. [2020] train their schema-guided model to predict the appropriate node, ui, from a set of

nodes U ′ (s.t., U ′ ⊂ U ). At training time, for efficiency reasons, the set of nodes U ′ is obtained by using the

corresponding node for every dialog context in the training batch. Since the training batches are randomly

sampled, this results in U ′ including nodes from a variety of different schema graphs. At inference time, the

dialog task is known and therefore only the corresponding schema graph needs to be attended to (i.e., U ′ will

contain nodes from a single schema graph). It is valuable to train the model to distinguish between different

nodes of the same schema graph. Specifically, the attention mechanism will learn stronger fine-grained

relationships when trained with negative samples from the same domain. As such, the training algorithm is

augmented to sample batches from the same dialog task, meaning that U ′ will only include nodes from a

single schema.

SAM improves on the baseline schema-guided model introduced by Mosig et al. [2020] by (1) leveraging

a stronger attention mechanism that better handles realistic user behavior, (2) computing a probability dis-

tribution only by attending to the schema graph and (3) modifying the training algorithm to have in-domain

negative samples which result in the model learning to identify fine-grained relationships. In combination

with the improved schema representation, SAM is better suited to handle realistic user behavior in zero-shot

settings.
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Model Task Transfer Domain Transfer
F1 score Accuracy F1 score Accuracy

Baseline ♦ 31.23 30.65 31.82 33.92
BERT+S ♦ 28.12 28.28 29.70 32.43
SAM − [1] 33.81 37.84 41.77 45.64

SAM − [2,3,4] 43.28 46.11 43.78 45.19
SAM − [2] 50.72 53.69 52.20 54.68
SAM − [3] 45.54 49.29 50.56 52.13
SAM − [4] 47.26 47.99 47.67 48.92

SAM 53.31 55.51 55.74 57.75

Table 6.2: Performance in zero-shot transfer. We present results on both task transfer and domain transfer.
Models marked with ♦ are attributed to Mosig et al. [2020]. SAM consists of four improvements upon
BERT+S: (1) user-aware schema, (2) word-level attention, (3) using negative samples from the same task at
training, (4) removing the linear classification layer. Results in bold-face are statistically significant by t-test
(p < 0.01).

6.2.3 Experiments

To validate the effectiveness of SAM, a number of next action prediction experiments are carried out on the

STAR dataset [Mosig et al., 2020]. First, SAM is evaluated in the standard experimental setting, i.e., training

and testing on the same tasks. Next, SAM is evaluated in zero-shot transfer experiments. The evaluation uses

accuracy and weighted F1 score.

The experiments presented by Mosig et al. [2020] are rerun using the same code. In the following results,

the model introduced by Mosig et al. [2020] is denoted as BERT+S. Their original results were obtained on

an older version of STAR, with annotation errors2 that have since been fixed.

Standard Experiments

In the standard experimental setting, models are trained and tested on the same tasks. Following Mosig et al.

[2020], 80% of the dialogs are used for training and 20% for testing. All models are trained for 50 epochs.

The results shown in Table 6.1 show SAM to be comparable to the baseline model on the standard setting.

Since the augmentations to SAM are primarily intended to induce zero-shot generalization to new tasks, it is

unsurprising that there is no performance improvement compared to the standard setting. When evaluating

on seen tasks, the linear classification layer is significantly more effective than attending to the schema.

This suggests that a large neural model (i.e., BERT) is able to implicitly learn meaningful dialog policies

from dialog data. It is possible that this performance difference may decrease with more expressive schemas

(e.g., having multiple examples for each user utterance, automatically learning schemas from the dataset).

The value of the newly introduced schema graphs is nonetheless shown when comparing SAM to SAM−[1]
2Specifically, certain dialogs were misattributed as being happy single-task dialogs.
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(i.e., the old schema graphs). These experiments provide an upper bound for the performance in zero-shot

transfer.

Zero-Shot Transfer

Table 6.2 shows the results of the zero-shot experiments. SAM obtains strong improvements over the base-

line models for both zero-shot task transfer and domain transfer. These experimental results validate the

effectiveness of the schema-guided paradigm, as well as the specific design of SAM.

Compared to the baseline model (described in Section 3.1), SAM obtains a +22 F1 score improvement

in task transfer and a +24 F1 score improvement in domain transfer. Since the baseline model is unable to

predict classes it has not observed at training time, its performance is limited to actions that are consistent

across domains (e.g., ‘hello’, ‘goodbye’, ‘anything-else’). This improvement highlights the effectiveness of

the schema-guided paradigm for zero-shot transfer learning.

BERT+S also leverages schemas for transfer learning. Yet, it under-performs relative to the baseline

model. SAM attains even larger improvements over this baseline schema-guided model. The weak perfor-

mance of BERT+S is largely a consequence of it being incapable of handling realistic user behavior. The

design of BERT+S (i.e., the schema only having system nodes) results in the model essentially predicting the

subsequent system actions. This is equivalent to sequentially predicting the next system action, regardless of

user behavior. With improved schema representations and model architecture, SAM achieves much stronger

performance in zero-shot transfer.

The ablation experiments shed more light on the performance of SAM relative to BERT+S. A significant

performance drop is observed when removing the newly constructed schema representations (i.e., SAM−[1]).
In contrast, adding the schema graphs to BERT+S (i.e., SAM−[2, 3, 4]) results in a strong performance im-

provement of +15 F1 score. This confirms the hypothesis that the schema graphs of Mosig et al. [2020],

which are largely comprised of system action nodes are insufficient for modelling realistic user behavior.

Word-level attention is shown to give moderate, albeit statistically significant, improvement. In contrast

to SAM−[2], SAM obtains a +3 F1 score improvement. While word-level attention allows the model to

better align the dialog to the schema, it is an architectural improvement that is not central to the schema-

guided paradigm.

Modifying the training algorithm to sample batches from the same task results in better negative samples

during training. This allows the model to learn to distinguish between nodes from the same schema graph

when aligning the dialog to the schema graph. When this modification is removed (i.e., SAM−[3]), the

performance of SAM drops by 8 F1 score for zero-shot task transfer.

The fourth and final component of SAM is the removal of the linear classification layer. Since this

classification layer is unable to predict classes it has not seen at training time, it is ineffective in zero-shot

settings. Unsurprisingly, removing it increases performance and SAM obtains a +6 F1 score improvement

over SAM−[4].
The zero-shot experiments shown in Table 6.2 empirically validate several hypotheses. First, the strong
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improvement over the baseline demonstrates the efficacy of the schema-guided paradigm for inducing zero-

shot generalization to new tasks in end-to-end dialog. Decoupling dialog policy and the language under-

standing by explicitly representing the task-specific dialog policies as schema graphs results in an improved

ability to transfer to unseen tasks. Next, the proposed approaches improve over the schema-guided model

of Mosig et al. [2020] through (1) an improved schema representation and (2) a collection of modifications

to the model. The improved schema representation better models realistic user behaviors in dialog, and

therefore results in better alignment of the dialog and the schema. The proposed architectural modifications

result in the model being able to learn better fine-grained relationships during alignment (e.g., through bet-

ter negative sampling and word-level attention) and better handle zero-shot transfer (e.g., by removing the

linear layer).

In contrast to prior work on zero-shot generalizability [Zhao and Eskenazi, 2018; Qian and Yu, 2019],

this approach is shown to effectively transfer between the vastly dissimilar domains of the STAR corpus

[Mosig et al., 2020] (e.g., trivia or spaceship maintenance). Rather than modelling a cross-domain map-

ping and leveraging similar concepts across different domains, the schema-guided paradigm decouples the

domain-specific (i.e., the dialog policy) and domain-agnostic (i.e., language understanding) aspects of dialog

systems.

6.2.4 Discussion

This work shows strong results in zero-shot task transfer and domain transfer using the schema-guided

paradigm. This work was motivated by the hypothesis that the difficulty of zero-shot transfer in dialog

stems from the dialog policy. When neural models implicitly memorize dialog policies observed at training

time, they struggle to transfer to new tasks. To mitigate this, the schema-guided paradigm explicitly provide

the dialog policy to the model, in the form of a schema graph. This work carries out an initial study of the

schema-guided paradigm by introducing the Schema Attention Model (SAM) and improved schema graphs

for the STAR corpus. The proposed approach attains significant improvement over prior work in the zero-

shot setting, with a +22 F1 score improvement. Furthermore, the ablation experiments demonstrate the

effectiveness of both SAM and the improved schema representations. This work validates the efficacy of the

schema-guided paradigm, and takes an important step towards inducing generalization to unseen tasks by

representing the task specification as an inductive bias.

6.3 Proposed Work: Robust and Reliable Schema-Guided Response Gener-
ation

The work on the Schema Attention Model (SAM) takes an important step towards validating the schema-

guided paradigm as mechanism for facilitating generalization to new tasks. However, this work is limited in

that it only addresses the problem of next action prediction. Studying zero-shot generalization in the context

of next action prediction does require addressing the issue of task-specific dialog policies. However, it
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ignores several challenges pertaining to practical applications of the schema-guided paradigm. This section

proposes to extend the schema-guided paradigm to the problem of response generation, and develop dialog

models that better adhere to the task specification and are more robust in realistic settings.

Generalization to unseen tasks is a highly practical and realistic class of generalization. System devel-

opers (e.g., in industry settings) often want to flexibly adapt and extend the capabilities of an existing dialog

system, without significant additional data collection or labor. The schema-guided paradigm, as evidenced

through SAM, demonstrates that it is feasible to (1) train a dialog model that learns to leverage schemas

and (2) induce generalization to unseen tasks by providing a structured graph-based representation of the

new tasks. To further validate the feasibility of this class of generalization in a practical setting, this section

proposes to extend the schema-guided paradigm to the problem of end-to-end response generation, with a

particular focus on enforcing controllability (via the task specification) and robustness in end-to-end schema-

guided models of dialog. The proposed work aims to further validate the use of the task specification as an

inductive bias for facilitating generalization to new tasks in realistic zero-shot settings.

The first direction of proposed work is schema-adherent reinforcement learning. The objective of this

proposed project is to develop schema-guided models of dialog that can reliably and robustly adhere to

the task specification. Due to noise in the STAR corpus [Mosig et al., 2020], schema-guided models like

SAM may occasionally diverge from the schema or rely on spurious correlations. In a practical setting,

it is imperative that schema-guided models are sensitive to minor modifications to the task specification

(e.g., swapping the order of certain nodes). As such, this work proposes a reinforcement learning paradigm

for training schema-adherent models of dialog. First, the schema-guided paradigm will be extended to the

problem of end-to-end response generation, building on both SAM and the work of Mosig et al. [2020].

The reinforcement learning paradigm will: (1) generate an arbitrary schema (or modify an existing one),

(2) have a schema-guided dialog system interact with a realistic schema-guided user simulator, (3) consider

the completed dialog and use a schema-adherence reward function to measure whether the system reliably

adhered to the schema. In addition to developing mechanisms for robustly extending the schema-guided

paradigm to response generation, this project will necessitate the development of (1) schema-guided user

simulators and (2) a schema-adherence reward function.

The second research direction is schema-guided fusion networks. This area of proposed work builds on

the learnings from Structured Fusion Networks (Section 4.2), to develop robust schema-guided end-to-end

models of dialog. Structured Fusion Networks (SFNs) decompose the problem of response generation into

three distinct dialog modules (NLU, DM and NLG), which are then combines through fusion mechanisms

and multi-tasking strategies. To facilitate robustness, controllability and generalization in end-to-end re-

sponse generation, we propose to develop a schema-guided model of dialog that can effectively combine

outputs from multiple models for various sub-tasks (e.g., intent prediction, slot filling, database query pre-

diction, etc.). The proposed project will first concentrate on developing dialog modules for various relevant

sub-tasks. Given these modules, several approaches will be designed to intelligently combine these mod-

ules for the task of end-to-end schema-guided response generation. By relying on multiple sub-modules,

schema-guided fusion networks will be grounded in the inherent structure of dialog while still exhibiting
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generalization to unseen tasks, as well as to unseen inputs and outputs. Schema-guided fusion networks

can potentially serve as a flexible and generalizable model of dialog, that can leverage modules for various

sub-tasks in a reliable, robust and controllable manner.

6.3.1 Schema-Adherent Reinforcement Learning

It is imperative that schema-guided models are sensitive to minor changes in the task specification (e.g.,

swapping the order of nodes). However, due to noise in the STAR corpus [Mosig et al., 2020], current

schema-guided models may often diverge from the task-specific schema. This is evidenced by the fact that

SAM is outperformed by the baseline model in the standard experimental setting, as shown in Table 6.1. This

work proposes to develop schema-adherent models of dialog through the use of reinforcement learning. The

schema-guided paradigm will first be extended to end-to-end response generation, building on the work of

SAM and Mosig et al. [2020]. Next, a reinforcement learning paradigm will be developed which will enforce

that schema-guided models can reliably adhere to minor changes in a task specification. To evaluate the

efficacy of the proposed approaches at producing reliable and robust schema-adherent response generation

models, experiments will be carried out to measure whether models can reliably adhere to both (1) minor

modifications to the schemas and (2) entirely unseen and unforeseen schemas that may be of drastically

different domains (e.g., newly created by humans during the evaluation).

Proposed Methods

To develop schema-adherent response generation models, the schema-guided paradigm must first be ex-

tended to end-to-end response generation. Mosig et al. [2020] did this by concatenating the template re-

sponse (from the schema) for the system action predicted by a next action classifier (e.g., SAM). This

approach is an effective starting point. However in the interest of training the response generation models

in an end-to-end manner, other strategies will be explored including the use of a copy-mechanism over both

the dialog history and the schema graph.

The primary objective of this proposed project is to construct a reinforcement learning paradigm that can

produce schema-adherent models of dialog. Concretely, the outline for the reinforcement learning training

is as follows:

(1) Generates an arbitrary task-specific schema, or modifies an existing one. Denote this schema as S.

(2) Given, S, a schema-guided dialog model (i.e., the agent) will interact with a realistic schema-guided

user simulator. The resulting dialog is denoted as D.

(3) Given the completed dialog D and the schema S, a schema-adherence reward function will assess

whether the agent effectively adhered to the schema.

(4) The reward function will be used as a training signal for the schema-guided model.
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This proposed reinforcement learning paradigm requires the development of (1) a schema-guided user

simulator and (2) a schema-adherence reward function. The schema-guided user simulator should be able

to produce realistic user utterances that convey specific slot values. The schema-guided user simulator must

be conditioned on an arbitrary schema and produce realistic user utterances. To develop such a simulator, it

may be necessary to leverage large-scale pre-trained language models (e.g., GPT-3) and to design heuristics

to ensure that the desired slot values are provided by the simulator. Furthermore, the user simulator must

exhibit realistic user behavior, in that it should provide information out of turn, change its mind and include

small talk in its responses. This realistic user behavior can be achieved through a combination of pre-

trained models, self-supervised training and heuristics. The schema-adherence reward function will build

on the recent work on evaluation metrics for dialog (e.g., the USR metric in Section 3.3). This function will

first align a completed dialogD to a schema S, using self-supervised models to measure sentence similarity,

possibly in a similar manner to BERTScore [Zhang et al., 2019b]. Given an alignment between the utterances

of the dialog and the nodes of the schema graph, an algorithm will be constructed to measure the extent to

which the system utterances adhere to the task specification defined by the schema. This algorithm will

penalize a schema-guided model for skipping system utterances, unnecessarily repeating system utterances

and failing to follow the schema in complex settings (e.g., conditional branches based on user utterances or

database outputs).

Proposed Experiments

There are three sets of proposed experiments to evaluate the effectiveness of the proposed approaches for

producing schema-adherent models of dialog:

• Standard Experiments: The resulting schema-guided model will be trained and tested on the same

tasks. This will measure the ability of the models to perform when provided with abundant data for a

specific task or domain.

• Zero-Shot Transfer Experiments: Developing more schema-adherent models of dialog should re-

sult in better performance in zero-shot settings. SAM performs about around 20 F-1 score lower in

zero-shot settings than it does in full-data settings, suggesting that there is considerable room for

improvement. Models that are trained to better adhere to the schema should decrease this gap and

achieve better performance in zero-shot transfer to unseen tasks.

• Schema-Adherence Experiments: To directly measure whether a schema-adherent response gener-

ation model can reliably adhere to changes in the task specification, a new experimental setup can

be designed. Concretely, a new schema S can be constructed (either automatically or by a human)3.

Another human can interact with a schema-guided response generation model. After the dialog is

3This can additionally serve as an assessment of the amount of time/effort needed to construct a new schema and thereby
induce transfer to an unseen task. While the schema-guided paradigm facilitates zero-shot transfer, it nonetheless requires labor. A
measurement of the time/effort can serve to demonstrate the relative ease of inducing generalization to a new task.
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complete, a human can assess whether the completed dialog was adherent to the schema S. This ex-

perimental setup mimics the reinforcement learning paradigm, and directly assesses whether a model

is sensitive to changes in the schema. To effectively measure schema-adherence, it is necessary to

generate drastically different schemas as well as schemas with minor modifications – to ensure that

schema-adherent models are sensitive to minor changes and robust to major differences.

6.3.2 Schema-Guided Fusion Networks

The schema-guided paradigm is specifically constructed to induce generalization to new tasks. This class of

generalization is challenging, as it encapsulates both generalization to new inputs (caused by domain shift)

and to new outputs (new actions, responses, etc.). The schema-guided paradigm, as manifested through

SAM, addresses the problems caused by neural models implicitly representing the task-specific dialog poli-

cies by leveraging an explicit representation of the task specification, i.e. the schema. The Schema Attention

Model, SAM, does leverage a self-supervised model and inductive biases in both the model architecture and

the problem formulation. However, to better address generalization to new inputs and new outputs, the

schema-guided paradigm can be combined with the techniques described throughout this proposal. Con-

cretely, we propose to build on the learnings from Structured Fusion Networks (Section 4.2), to develop

robust schema-guided end-to-end models of dialog. Structured Fusion Networks (SFNs) decompose the

problem of response generation into three distinct dialog modules (NLU, DM and NLG), which are then

combined through fusion mechanisms and multi-tasking strategies. To facilitate robust and controllable

models of dialog, which are capable of generalization to new tasks, this work proposes to develop schema-

guided models that can effectively combine outputs from multiple sub-modules (e.g., intent prediction, slot

filling, database query prediction, etc.). The proposed project will first concentrate on developing dialog

modules for various relevant sub-tasks. Given these modules, several approaches will be designed to intelli-

gently combine these modules for the task of end-to-end schema-guided response generation. By relying on

multiple sub-modules, schema-guided fusion networks will be grounded in the inherent structure of dialog

while still exhibiting generalization to unseen tasks, as well as to unseen inputs and outputs. Schema-guided

fusion networks can potentially serve as a flexible and generalizable model of dialog, that can leverage

modules from various sub-tasks in a reliable, robust and controllable manner.

Proposed Methods

First, several modules will be trained for various sub-tasks that may be relevant to the problem of end-to-end

response generation. These modules may rely on approaches described throughout this proposal.

• Intent Prediction: Though the STAR corpus does not have explicit intent annotations, it may be pos-

sible to leverage mechanisms for zero-shot or few-shot intent prediction, such as the work described

in Section 4.3.

• Slot Filling: Similar to to intent prediction, there are no utterance-level slot annotations in the STAR
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corpus. However, through the queries to the database, it is possible to obtain an overall set of slots in

the dialog. By leveraging zero-shot slot filling strategies, possible GENSF (Section 5.3), it might be

possible to ground response generation models in the underlying slots.

• Natural Language Generation: Large-scale pre-trained language models produce coherent and

fluent responses [Zhang et al., 2019c]. Through fusion mechanisms, similar to what was done in

Structured Fusion Networks (Section 4.2), the natural language generation capabilities of these large

models could be leveraged by a schema-guided model.

• Dialog State Tracking: Tracking the state of an on-going dialog is central to the schema-guided

paradigm. Concretely, predicting how much of the schema has been completed is an important sub-

problem of the schema-guided response generation problem. Through heuristics, it may be possible

to construct labels for partial dialog (i.e., utterance 1 to i) that indicate which nodes of the schema

have been covered. These labels may allow an sub-module to be trained for the problem of dialog

state tracking.

These various dialog modules must be capable of generalizing to new inputs (domain shift) and to new

outputs (new slots, intents, etc.), in order to effectively transfer to unobserved tasks. To facilitate this, it

might be necessary to extend the definition of the task specification beyond just the schema graph. For

example, it might be necessary for each task specification to include both the schema graph as well as an

ontology of slots.

After constructing modules for various sub-tasks, including but not limited to those listed above, mech-

anisms for fusion and multi-tasking will be explored in order to construct a schema-guided fusion network.

Ideas explored in Section 4.2 will be explored, including Naïve Fusion and Multi-Tasking Fusion.

Proposed Experiments

The set of proposed experiments will be similar to those described in the previous section. However, in

addition to the aforementioned set of experiments, it will also be valuable to examine the effect of various

sub-modules on the performance of the overall schema-guided fusion network. This can be done in the form

of an ablation experiment, wherein certain sub-modules are removed to measure their respective contribu-

tion. The effect of sub-modules can also be measured by assessing the importance of collecting annotated

training data for different sub-tasks. For example, would having annotations for intent prediction drastically

improve the performance when transferring to a new task? To answer this research question and to assess

the impact of various sub-modules, an experiment will be designed and carried out.

6.3.3 Timeline

Schema-Adherent Reinforcement Learning
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• October 2021: Extend the schema-guided paradigm to response generation. Develop mechanisms for

schema-guided synthetic data generation.

• November - December 2021: Develop initial reinforcement learning paradigm with synthetic data and

schema-adherent reward function.

• January 2022: Write paper.

Schema-Guided Fusion Networks

• January 2022: Develop initial dialog modules for various sub-tasks (intent prediction, slot filling, state

tracking, database query prediction, language generation).

• February - March 2022: Experiment with multiple fusion mechanisms and multi-tasking paradigms.

• April 2022: Write paper.

Thesis Writing

• April 2022 - June 2022: Write thesis.
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